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Abstract:  Although integrating multiple  levels of data into an analysis
can often yield better inferences about the phenomenon under study,
traditional methodologies used  to combine multiple levels of data are
problematic. In this paper, we discuss several methodologies under the rubric
of multil evel analysis.  Multil evel methods, we argue, provide researchers,
particularly researchers using comparative data, substantial leverage in
overcoming the typical problems associated with either ignoring multiple
levels of data, or problems associated with combining lower-level and higher-
level data (including overcoming implicit assumptions of fixed and constant
effects). The paper discusses several variants of the multil evel model and
provides an application of individual-level support for  European integration
using comparative politi cal data from Western Europe.
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INTRODUCTION

Many problems in politi cal science can be studied at multiple levels of analysis and
combining these levels into a single analytical approach is often very desirable. A
considerable number of theories and hypotheses in politi cal science hinge on the
presumption that “something” observed at one level affects or is related to “something”
observed at another level.  Yet despite the prevalence of cross-level or multil evel theories
and hypotheses of politi cal behavior, politi cal scientists have been slow to adopt
statistical methods developed for analyzing multil evel data structures.1  The goal of this
paper is to describe and ill ustrate these methods for problems of comparative analysis.
We take a very broad view of “comparative analysis” in this paper.  Any research design
that generates inferences explicitly based on comparisons across politi cal “units” suffices
to be comparative analysis.  A politi cal unit may be geographically defined (i.e. states or
countries), temporally defined (i.e. comparisons of elections across time), or socially
defined (for example, politi cal or social groups, class, etc.).

We choose comparative analysis as our domain of application because multil evel data
structures are prevalent in this type of research.  Indeed, some have even made it a
defining characteristic of comparative research that multiple levels of analysis are
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analyzed simultaneously (e.g. Rokkan 1966; Przeworski and Teune 1970; but see Ragin
1987, 4).  The methods we consider are known under a variety of names – multil evel
analysis, hierarchical models, random coeff icients models, and variance components
analysis.   The common element of all of these methods is that a dependent variable is
analyzed at the lowest level of analysis in which a researcher is interested.  This variable
is analyzed as a function of predictors measured at this level of analysis and of predictors
measured at one or more higher levels of analysis.  Moreover, the impact of the
predictors at the lowest level of analysis is allowed to randomly vary over the higher
levels of analysis.

Our strategy in this paper is to first outline the motivation for conducting multil evel
analysis.  Second, we discuss some statistical problems inherent with multil evel data
structures and consider why traditional approaches for dealing with these kinds of
structures are problematic.  Third, we outline the multil evel model and describe how it
helps alleviate some of the problems associated with multil evel data structures.  Fourth,
we discuss the statistical aspects of multil evel analysis, including a consideration of
interpretation, modeling strategies, and software issues.  Fifth, we present applications of
multil evel techniques.  And sixth, we conclude with a discussion of some caveats and
pitfalls associated with multil evel methods.

MOTIVATION FOR MULTILEVEL MODELS

The motivation for multil evel modeling lies in the assumption that variation in a
dependent variable is a function of both lower-level and higher-level factors.
Furthermore, the relationship between these factors and the dependent variable is not
assumed to be fixed or constant across space or time.  Therefore, when examining
individual-level data, variation in behavior (or attitudes, preferences, and so forth) is not
only a function of individual-level attributes, but also extra-individual factors or more
generally, macro-level factors.2  From an econometric point-of-view, this implies
regression coeff icients in micro-level models are not fixed, but allowed to vary across
these factors.  What “ these factors” are, or course, is a theoretical question.  In this
section, we consider various theoretical and practical motivations for combining multiple
levels of data.

Cross-Area Comparative Analysis.  We use the term “cross-area” to denote research
designs that comparatively examine multiple geographical “units.”  The units in this kind
of design may involve countries, geographical regions that extend beyond national
borders, or regions within a single country.  Despite the unit of analysis, a perennial
concern in cross-area comparative politi cal science is the issue of “contextual variation”
(c.f. Ragin 1987; Colli er 1993; Agnew 1987, 1996a).  Unfortunately, what actually
comprises “context” is often ill -defined or generally cast in terms of amorphous “politi cal
culture” arguments.  Furthermore, the issue of  actually being able to model “context” has
been hotly debated among comparative methods scholars for many years (for example,
Kalleberg 1966; Rokkan 1966, 1971; Sartori 1970, 1991;  Przeworski and Teune 1970;
Lijphardt 1971; Geertz 1973; Agnew 1987, 1996a; Ragin 1987; King, Keohane, and
Verba 1994; King 1996, to name a few).  The cleavages of this debate are too complex to
fully document here; however, one aspect of the “contextual problem” has been the
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countervaili ng view of the necessity and abili ty of researchers to engage in quantitative
analysis of cross-area data.

Politi cal contexts, some have argued, are too complex, too varied, and too
nuanced to be adequately captured in econometric models.  Instead, “ thick description”
(Geertz 1973) or single case-study approaches are the only valid means toward
comparative analysis, at least from this perspective.  Nevertheless, that politi cal contexts
vary, have led some comparativists to actually advocate “ large-n” quantitative analyses
(for example, Przeworski and Teune 1970 and more generally, Jackman 1985).  The
argument here, roughly put, is that in order to understand the importance of contextual
variation, one actually needs variation in contexts.  Expressed in this way, the problem of
modeling contextual variation is akin to the “case selection” problem delineated generally
by Achen (1986) and in terms of comparative analysis, by Geddes (1990) and King,
Keohane, and Verba (1994).3

But to “select cases” implies there are cases to select.  The argument is frequently
made that comparable cross-area data are rarely available for comparative analysis, and
furthermore, the data available are largely aggregated, country-level data (see Colli er
1993, for an overview of these concerns).   So the question becomes, how does one
model “context”4 when one, apparently, has few data points (and the few available are
aggregated)?  The answer to this question leads to circularity.  Because of the inherent
problems with cross-area data (lack of it, incomparabili ty), thick description or single-
case studies are, by many arguments, the only valid modes of analysis.  But then (as
noted above) contextual variation cannot be modeled because there is no context that
varies in single case studies.  Therefore, “ large-n” analyses need to be performed to
capture this variation.  But comparable data are rarely available… .  And so on.

This “data problem” elicits both practical and theoretical problems.  Practically,
the lack of extensive aggregate and individual-level data precludes, in some instances,
many quantitative methodologies.5  This is particularly problematic for researchers who
attempt to model cross-area variation in individual-level behavior and simultaneously try
to account or “control” for contextual effects.  Indeed, individual-level analyses have
been problematic because of the preponderance of aggregated data, to the exclusion of
individual-level data.  Nevertheless, two developments, one methodological, the other
data-related, have made inference-making at the individual-level possible.

First, King’s (1997) work on the ecological inference problem seems to provide
an avenue for comparative researchers to generate individual-level inferences from
aggregated data.  Because there is a relative wealth of aggregate data (when compared to
individual-level data) across countries and regions, King’s solution to the ecological
inference problem may elicit more attempts to understand variation in individual-level
behavior.6  The approach we take in this paper differs from King’s work (although
aspects of statistical estimation are similar) because we presume the existence of both
individual-level and aggregate-level data.

Fortuitously, the second development in cross-area analysis has been the emergence
of individual-level survey data.7 Although the Euro-barometer has been around for many
years, the World Values Survey (Basanez, Inglehart, and Moreno 1997) promises to add a
considerably wider range of individual-level data for many global regions.  Additionally,
a host of other regional surveys (see analyses of these data in Gibson 1996, Gibson and
Duch 1992, Gibson, Duch, and Tedin 1992, Mishler and Rose 1997, and so on) indicates
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the problem with limited individual-level data is dissipating rapidly.8  Recent research
using cross-area individual-level data suggests substantial leverage may be gained in
understanding processes of citizen and elite opinion dynamics, support for democracy,
racial and ethnic tolerance, and so forth (see Franklin, Marsh, and McLaren 1994;
Franklin and Rudig  1995; Franklin, Van Der Eijk , and Marsh 1995; Gibson and Duch
1992; Gibson, Duch, and Tedin 1992;  Gibson and Caldiera 1996; Gibson 1996; Mishler
and Rose 1997 for very recent examples of this work).

With the emergence of individual-level data, the theoretical “data problem” then
becomes one of relating individual-level data to aggregate-level data.   We think the
concerns comparativists have with contextual variation, and more generally, with the
relationship between macro-level factors and individual-level factors can be addressed
with the multil evel techniques we discuss in this paper.  The argument that contextual
variation precludes systematic quantitative analyses of individual-level behavior in cross-
area research, we believe, is now largely vacuous.  The growing body of individual-level
and aggregate-level data in comparative politi cs permits estimation of models that can
combine data measured at different levels.  Problems of heterogeneity, assumptions of
fixed effects, and most generally, contextual variation, can be accounted for with
multil evel techniques.

Pooled Time-Series Cross-Sections. Comparative politi cal data are frequently analyzed as
pooled time-series cross-sections.  Work in the politi cal methodology literature has
extensively considered the special problems that emanate from such data (c.f. Beck 1983;
Stimson 1985; Beck and Katz 1995, 1996a, 1996b).  Recently, Beck and Katz (1996b)
and Western (1997) have considered estimation of random coeff icients models for pooled
time-series cross-section designs. Among the statistical problems that emerge from such
designs is what Western (1997) calls “causal heterogeneity.”

For example, if one is interested in the relationship between some set of covariates
and economic conditions (such as unemployment; see Western 1997), unaccounted-for
causal heterogeneity may lead to incorrect or imprecise inferences.  As he notes, only if
one assumes the relationship between covariates and the dependent variable is constant
across countries does one need not worry about causal heterogeneity.  Unfortunately,
given the pronounced relationship of “contextual factors” that vary across countries
(Przeworski and Teune 1970), it is unlikely that the same forces operating in one country
are constant across all countries (Western 1997).  In time series analysis, this suggests
that “ fixed” features of a country (for example, institutional factors that are largely time-
invariant) may induce heterogeneity because parameters in standard time series are
agnostic to country-specific factors that induce variable coefficients.  This kind of
heterogeneity is therefore left unaccounted-for and relegated to the error structure.  But if
institutions are “nested” within countries then parameter estimates in the time-series may
vary in accordance with institutional or contextual variation (Western 1997).  The models
discussed here and in Western (1997) provide researchers who work with pooled time-
series cross-sections some leverage in accounting for this kind of heterogeneity.  Thus,
this type of design in comparative politi cs provides another theoretical motivation for
using multil evel analysis.

In addition to pooled cross-section time-series designs for aggregate comparative
data, multil evel methods may prove useful for pooled designs with individual-level data.
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For example, “election effects” may be modeled by thinking of individuals as being
nested within campaigns or elections.  National or regional aggregate politi cal factors
may produce varying coeff icients for individual-level models, if individuals respond or
behave differently to changing national conditions (c.f. Kramer 1983; Haller and Norpoth
1994) or politi cal campaigns (c.f. Kahn and Kenney 1997, Westlye 1994).  More
generally, comparative analyses of elections over time, or comparative analyses of
multiple campaigns within a single national election may require examining data
measured at multiple levels.  In either design, multil evel methods may be appropriate
tools.

Comparative Institutions and Legislative Behavior.  Scholars interested in legislative
behavior frequently deal with data measured at multiple levels.  For example, data on
voting records of U.S. House and Senate members is widely available and an abundance
of research suggests these voting records vary, at least to some degree, on constituency
characteristics and institutional attributes9 (c.f. Kingdon 1992;   Jackson and King 1989;
Box-Steffensmeier, Arnold and Zorn 1997).   Analyses of legislative behavior outside the
United States has also found considerable variation in legislator behavior attributable to
constituency characteristics (c.f. Ames 1987, 1995).  And more generally, legislator
behavior across a variety of  activities (voting, committee selection, electoral behavior,
etc.) has been shown to be related to institutional characteristics as well as preferences of
constituencies (c.f. Hibbing 1992; Katz and Sala 1995).

Comparative legislative research has focused on, among other things,  the extent
to which legislators pursue the “personal vote” (Cain, Ferejohn, and Fiorina 1987; Carey
and Shugart 1995).  Carey and Shugart (1995) hypothesize that legislator behavior is
substantially conditional upon nomination processes and electoral laws.  Such facets of a
country’s electoral system clearly vary across countries and how this macro-level
variation combines with legislator characteristics suggests that a model combining both
the macro- and micro-level data is appropriate.

Contextual Analysis.   Contextual analysis of politi cal behavior is a research field where
the assumption of aggregated influence on individual-level opinions and behavior is most
explicitly made (see Huckfeldt and Sprague 1993). The major supposition of contextual
analysis is that the “contextual effect…arises due to social interaction within an
environment” (Huckfeldt and Sprague 1993, 289).  This environment (i.e. the context)
may be spatially defined, for example, in terms of local neighborhoods (c.f. Huckfeldt
and Sprague 1987; Brown 1981, 1988) or in terms of local “social networks” (c.f.
McKuen and Brown 1987).  Thus, requisite data for contextual analysis involves
information gathered both at the individual level and at the extra-individual level.

Apart from spatial or geographic definitions of context, politi cal scientists have
long regarded politi cal and social groupings as a source of contextual variation (c.f.
Uhlaner 1989; Lau 1990; Smith 1990).  The basic idea here is that group membership, or
more specifically, attributes of the group itself, exert influence on an individual’s
opinions, attitudes, preferences, or behaviors.  Thus, when treated as a “contextual
effect,” individual-level outcomes are conditioned on not only individual factors, but also
group-level effects.10  And the social influence of groups need not be confined to tangible
aff ili ations (for example, membership in the National Rifle Association or the Sierra
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Club).  The notion of social identification (c.f. Tajfel 1978) suggests that individuals may
“ identify” with many social groupings that are not necessarily well defined or bounded as
is the case with affili ational groups.  For example, individuals may identify with ethnic,
racial, socioeconomic, or class-based groupings.  In this case, the contextual “unit” is
very disperse but the contextual “effect” still im plies that a macro or group level
“consciousness” or awareness influences individual-level judgements and behavior.11

So broadly defined, contextual analysis provides a convenient segue for
multil evel modeling.12  Contextual theories or hypotheses posit that individual behavior is
some function of  both individual-level and extra-individual factors, and therefore, data at
multiple levels need to be considered jointly. How these multiple levels of data are
combined has been an on-going issue in contextual analysis (c.f. Boyd and Iverson 1979;
Iverson 1991; Sprague 1976, 1982; Sitpak and Henslar 1982) and we argue the
theoretical underpinnings of contextual analysis naturally leads to a consideration of
multil evel methods.

To conclude this section, we have delineated several theoretical, practical, and
substantive motivations that provide an avenue toward multil evel modeling.  Clearly,
there are more technically oriented reasons why one might consider analyzing multiple
levels of data, and of course, we address these issues in detail below; however, from an
applied perspective, there are numerous hypotheses and theories in politi cal science that
leads us to consider combining lower and higher levels of data.  In the next section, we
discuss why traditional methods of combining multil evel data are problematic.

COMBINING MULTIPLE LEVELS OF DATA

Comparative research frequently involves combining multiple levels of analysis;
however, many standard techniques for combining data are inadequate.  In this section,
we consider the problems associated with the “separate models” approach, the dummy
variables approach, and most generally, the interactive model approach.

Separate Models.  One method to “combine” multiple levels of data in a research design
is to avoid combination, or to eliminate variance in higher-level factors.  For example, a
cross-area research design may consider how individuals nested within a Western
European country support their country’s membership in the European Union.  Because
“contextual,” historical, or other extra-individual factors may influence in some way,
individual-level attitudes and preferences, these factors are “held constant” by estimating
separate individual-level models for every country:

iii xy εββ ++= 101

iii xy εαα ++= 102

.

.

ijy = iix εωω ++ 10

In this case, the parameters reflect the relationship between xi  and the response variable.
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The different Greek characters ill ustrate the specific parameters derived from estimation
of separate models for each of the j countries.   Such a design can avoid combining cross-
level data because country-specific factors (or contextual effects) are essentially held
constant because only individual-level data nested within the country are used to derive
parameter estimates.  In this sense, context is implicitly modeled by not being modeled.
Frequently in such designs, “eyeball ” comparisons are made across the rows of
coeff icients estimated for each country and assessment (often times nonstatistical
assessment) is made by comparing and contrasting differences in magnitudes of  the
coeff icient estimates.  With respect to understanding how macro-level factors relate to or
interact with lower-level factors, however, this design is problematic.

Because contextual factors that may vary across the j countries are ignored (a
result of the separate models), it is diff icult to discern the relationship between macro and
micro-level variables.  Although coeff icient estimates may (or may not) vary across the
separate-country regressions, typical “eyeball ” tests do not provide sound evidence of
statistically significant variation (or lack thereof).  And while statistical comparisons
across pairs of regressions (for sets of coeff icients) are possible using multiple Chow
tests,13 it is not obvious what the import of  these tests are in terms of making inferences
about specific parameters (Bartels 1996).14  Eyeball comparisons or Chow test statistics
only provide information about differences across sets of equations, and therefore provide
no information on why the variation exists in the data across the j units.

Differences in parameter estimates may be attributable to unobserved
heterogeneity.15  The source of this heterogeneity may center on contextual factors or
some other type of unobservable factor that exhibits influence on individual-level data.
Ironically enough, it is because of  this heterogeneity—the unobserved (or unmeasured
contextual factors)—that some comparativists resort to disaggregating data by country (or
some other unit) rather than pooling observations.  Indeed if the disturbance variances
across the countries (or more generally, units) are unequal, such that )()( 22

ji EE σσ ≠ ,

then an appropriate modeling strategy is to disaggregate the data and estimate models on
subsamples (c.f. Greene 1993, 236;16 but see Bartels 1996), or estimate models that can
accommodate heteroskedastic error structures.

The problem with not pooling the data, at least with regard to making multil evel
inferences, is that a considerable amount of information is lost, wasted, or ignored by
faili ng to pool the observations.  And even more problematic, the influence of contextual
factors—influence commonly hypothesized in comparative research—cannot be assessed
through disaggregation.  Thus, if the theory suggests a combination of multiple levels of
data, then unit-specific models fail to capture the theory because they are incapable of
discerning the relationship between higher and lower levels of data.

Dummy Variables Models.  One technique often used to gain some leverage on the
heterogeneity problem discussed above is through the use of dummy variables.  Because
data pooled across contextual units potentially elicit heterogeneity, dummy variables are
commonly used to “capture” this heterogeneity on the right-hand side of the equation.
Capturing heterogeneity through dummy variables may involve inclusion of separate
indicators for the j-1 contextual units:

ijkii DDDxy εβββββ ++++++= −1231210 ... ,
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where the D terms represent binary indicators for the j-1 units.  The dummy variables
approach is frequently used with pooled time-series data in the form of least squares
dummy variables models (LSDV) to model either “space” or “ time”17 problems (c.f.
Stimson 1985, Sayrs 1989, Hardy 1993) and in comparative analyses to model unit-
specific heterogeneity.  In this sense, inclusion of dummy variables acts as a control, of
sorts, for  the “noise” inherent in the pooled cross-sections, or in the time dynamic.  And
to that end, the dummy variables approach is perfectly reasonable and justifiable.18

However, if the intent of the model is to derive substantive inferences about the
relationship between multiple levels of data, then the dummy variables approach is
problematic.

To the extent one is concerned with aggregate-level influence, a dummy variable
indicator for a contextual unit provides sparse information about macro-micro
relationships.  With the use of dummy variables, the researcher is implicitly arguing that
important differences exist between contextual units, but can say very littl e about the
mechanisms eliciting these differences because dummy variables do not represent
anything “substantive.” 19  Little insight is gained from examining parameter estimates of
dummy variables, except in noting that some unit-specific influence is at work  And
given the bluntness of  the information yielded by dummy variables, the inference
problem gets worse as the number of contextual units increases.  Pooling data generated
across a number of units induces a “proli feration of parameters” problem. If one is
serious about modeling unit-specific factors, then one will necessarily need to include a
substantial number of parameters in models.  As a method of combining multiple levels
of data, then, the dummy variables approach fails. Moreover, even if dummy variables
yielded interesting information about contextual variation, precisely how individual-level
data relate to the macro-context ostensibly “measured” through the dummy indicators is
still unaccounted for.20

The Interactive Model.  The problems raised in the previous two sections can be
alleviated somewhat through what we will call the “interactive model.”  In the linear
modeling context, the interactive model treats the relationship between an independent
variable  and a response variable as nonadditive and one that is mediated through one or
more independent variables.  With multiple levels of data, we might think the relationship
between individual-level variables and the response variable as being mediated by some
extra-individual variable measured at a higher level.  For example, we could postulate
that

ijijii zxzxy εββββ ++++= 11312110 ,

where zij denotes a unit specific or extra-individual (hence the j subscript) variable and β3

denotes an interaction “effect” between the individual-level variable x1 and z1j. Dropping
subscripts for now,  if one or both z and x are continuous or semi-continuous variables,
then the interaction parameter, β3 ill ustrates how the bivariate slope between x and y is
mediated by or varies with values of z.  That is, x “ interacts” with z to produce varying
slopes.  Furthermore, if z is an indicator of a hypothesized contextual factor (for example,
a nation’s unemployment rate, type of government, ideological climate), then we have,
apparently, modeled the contextual effect.
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The interactive model, at least when compared to the “separate models” or
dummy variables approach, is clearly more attractive in terms of combining multiple
levels of data.  Instead of ignoring contextual factors as is usually done with separate
regressions and instead of collapsing the contextual “effect” into the form of a dummy
variable, we have both accounted for unit-specific contextual variables, pooled the data
across units, and linked the contextual factor to the individual-level variable.  All of this
yields parameter estimates allowing us to consider how individual observations “move”
or vary with contextual variables.

Obviously, the interactive model is well known to politi cal scientists (in large part
due to Friedrich’s [1982] article) and has been frequently used to demonstrate contextual
effects, election effects, country effects, group effects and the like (c.f. Iverson 1991).
The problem with the interactive model, however, is the implicit specification that the
contextual “effect” is deterministic.  To see this, we can retrieve the interactive model
through the following exercise.  Suppose we specify the following model:

iii xy εββ ++= 110 ,

but believe that the relationship between x1i  and yi  is mediated by the contextual variable
z1j.  Under such conditions, we can rewrite β1 as

jz111101 γγβ +=

and express β0 as

jz101000 γγβ +=

  Substituting these expressions into the original model, we obtain  

 iijiji xzxzy εγγγγ ++++= 111111010100 ,

which is equivalent to the original interactive model discussed earlier.  But because in
this formulation, the interaction of x and z is explicitly specified in terms of a varying
coeff icient, it is easy to see the deterministic nature of the interactive model.   The two
expressions for β1 and  β0 are fully deterministic functions of z.  This is equivalent to
saying there is no stochastic disturbance associated with the interaction, and that the slope
and intercepts are determined solely by z.

But suppose the interaction is not fully determined by z, but also is a function of
stochastic error.  Then the expressions for β1 and   β0 can be written as

jjz 1111101 δγγβ ++=

jjz 0101000 δγγβ ++=

and substituting these into the interactive model produces
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iijjijiji xxzxzy εδδγγγγ ++++++= 110111111010100 .

The two δ terms represent the stochastic disturbances associated with the slope and
intercept.  In this case, both the slope and intercept have been rewritten as random
coefficients. The addition of the two error terms substantially complicates matters
because instead of a single source of stochastic variance in the interactive model, we now
have two sources.  The first source emanates from the lower level data, the second from
the contextual or higher-level data. Typically, this second source of stochastic variance is
ignored in interactive models thus implicitly treating slopes and intercepts as stochastic
functions of z.  Consequently, the traditionally estimated interactive model is problematic
in terms of its abili ty to combine multiple levels of data.  Because the complex error
structure that almost surely exists in many applied settings of comparative research is
ignored through the standard interactive model, we turn our attention to multil evel
methods.

To summarize this section, we have found that traditional methods used to
combine multiple levels of data breakdown in important ways.  While the standard
interactive model ostensibly demonstrates contextual effects, we find it makes very strict
assumptions about the relationship between slopes and intercepts and the contextual
variables.  More generally, the problem with the traditional methods is that they fail to
capture “real” contextual factors (as in the case of the dummy variables approach), fail to
relate higher-level data to lower-level data (as in the case of the separate models approach
and dummy variables approach), and fail to account for macro-level stochastic variation
across contextual units (as in the case of the standard interactive model, the dummy
variables approach, and the separate models approach).

THE MULTILEVEL MODEL

In this section, we derive the basic form of the multil evel model and provide
extensions.  This section relies extensively on the work of Jackson (1991) and especially
on the pioneering work of Bryk and Raudenbush (1993), Goldstein (1995), and Longford
(1993).  The intellectual roots of the multil evel model extend at least as far back as
Swamy (1970), with his groundbreaking work on random coefficients models.

Basics of Multilevel Models
The simplest multil evel model that can be formulated considers only two levels of

analysis. The first and most elementary of these levels will be referred to as level-1 and it
is on this level that the analysis is focused. The remaining level is referred to as level-2
and provides the context for the level-1 units. For instance, level-1 units could be voters
who are nested in different countries (level-2 units). The dependent variable is measured
for level-1 units, since this is the primary level of analysis.21 We shall denote the
dependent variable as yij, where i refers to level-1 units and j refers to level-2 units. We
assume there are J level-2 units, each containing nj units.

The objective of multil evel models is to account for the expected value of yij. In
the simplest case this is done via a linear model, although multil evel models may be
nonlinearly specified. To simply further (again, without loss of generali ty) we first
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consider only a single level-1 predictor, xij, in the level-1 model. The basis of the
multil evel model is

[1] ijijjjij xy εββ ++= 10 ,

so that ijjjij xyE 10][ ββ += , assuming 0][ =ijE ε . The model in equation [1] looks very

similar to a bivariate regression model, with one important exception: the regression
parameters are subscripted in j. This indicates that, unlike normal regression analysis, the
effect of level-1 is not considered fixed but allowed to vary across level-2 units. As we
have argued, such variation is often assumed in comparative research, thus making the
level-1 model attractive.

To model the contextual variation in regression parameters it is possible to
formulate additional equations, this time for the contextual or level-2 units. One or both
level-1 regression parameters constitute the left-hand side variables in these equations.
The right-hand side variables consist at a minimum of a constant and typically also
include at least one level-2 predictor and a disturbance. Thus, a typical level-2 model
consists of the following equations:

[2a] jjj z 001000 δγγβ ++=
[2b] jjj z 111101 δγγβ ++= .

Here, zj denotes a level-2 predictor, the parameters γ  indicate fixed effects (similar to the

coeff icients in the classical li near regression model), and the parameters δ are
disturbances that capture any random variation in the level-1 parameters that remains
after controlli ng for the level-2 predictor.

The multil evel model is characterized by the complete system of equations that is
given in equations [1]-[2b]. However, for the sake of simplicity the model is often
characterized by a single equation by substituting [2a]-[2b] into [1]:22

[3]
( ) ( )

ijijjjijjijj

ijijjjjjij

xxzxz

xzzy

εδδγγγγ
εδγγδγγ
++++++=

++++++=

1011100100

1111000100
.

The first four terms on the right-hand side of equation [3] indicate the fixed effects in the
model. The first of these terms gives the intercept or constant, the second the effect of the
level-2 predictor, the third the effect of the level-1 predictor, and the fourth the interactive
effect between the level-1 and level-2 predictors (the so-called cross-level interaction).
The latter term provides insight into how contexts alter the impact of level-1 predictors.
The last three terms in equation [3] are random effects – collectively they comprise the
disturbance of the multil evel model. Here, δ0j  gives the residual contextual variance in

the level-1 intercept after controlli ng for zj, δ1j ijx  gives the residual contextual variance

in the slope for xij, and ε ij  is the usual level-1 disturbance term (capturing omitted level-1

predictors, measurement error in yij, and any idiosyncratic sources of variation in yij that
can be attributed to level-1 units). We can conceive of δ0j  and δ1j ijx  as parameter noise
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and of ε ij  as level-1 unit noise. Thus, prediction errors of the multil evel model have two

sources: (1) imperfect modeling of the dependent variable ( ijε ); and (2) imperfect

modeling of the level-1 parameters ( j0δ  and ijj x1δ ).

Equation [3] looks similar to the interactive contextual model that we discussed
earlier. In fact, it should now be clear that the standard interactive model is a special case
of the multil evel model in equation [3]: if we set 00 =jδ  and 01 =jδ , then equation [3]

reduces to the interactive model. Notice, however, that this simpli fication depends on a
rather strong assumption, namely that the contextual variation in intercept and slope can
be perfectly accounted for by zj (see equations [2a]-[2b]). In most cases this assumption
is highly problematic because it assumes a far greater knowledge about contextual effects
than we typically possess. Rather than assuming perfect predictabili ty of contextual
parameter variation, we should test for this; multil evel modeling allows one to do this.

By incorporating parameter noise terms, the multil evel model bypasses the
dubious CLRM assumptions of homoskedasticity and no serial correlation. Indeed, it is
easily verified that the variance of the multil evel disturbance term is not constant and that
the disturbances from level-1 units within the same level-2 unit are correlated. To show
this we can write the multil evel disturbance term as ijijjjij xu εδδ ++= 10 . Further, we

shall make the following assumptions about the components of this disturbance:

A.1 0][][][ 10 === ijjj EEE εδδ

A.2 2
111000 ][,][,][ σετδτδ === ijjj VVV

A.3 0],[],[],[ 10 === klijijjijj CovCovCov εεεδεδ
A.4 0110 ],[ τδδ =jjCov

Assumption A.1 states that there is no systematic parameter noise or level-1 noise.
Assumption A.2 states that parameter noise and level-1 noise can be characterized by
constant variances.23 Assumptions A.3 and A.4 indicate that the different components of
uij are uncorrelated, with the exception of δ0j  and δ1j . This means: (1) that there is no

serial correlation between level-1 disturbances; and (2) that level-1 and level-2
disturbances are uncorrelated. The latter assumption implies that omitted level-1
predictors are not correlated with omitted level-2 predictors.

With these assumptions we can now derive the variance of uij:

[4a]

( )[ ]
[ ] [ ] [ ] [ ]

.2

2

][

2
11

2
0100

22
1

2
10

2
0

2
10

στττ

εδδδδ

εδδ

+++=

+++=

++=

ijij

ijjijjjijj

ijijjjij

xx

EExExE

xEuV

We see that while the components of uij are homoskedastic, uij itself is inherently
heteroskedastic as it is a function of level-1 predictors. Indeed, only when no parameter
noise is assumed for the level-1 slope, will V[uij] be homoskedastic.

The multil evel disturbances are also serially correlated for level-1 units in the
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same context. Let uij and ukj denote two such disturbances, then:

[4b]

( )( )[ ]
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Clearly, when the level-1 parameters are modeled as stochastic functions of level-2
predictors, multil evel disturbances will be correlated for units in the same context. Only
when we assume perfect predictabili ty of the level-1 parameters can we safely assume
that there is no serial correlation.

The General Multilevel Model and Sub-Models
We can generalize equations [1]-[3] by including multiple level-1 and level-2 predictors.
Let there be P level-1 predictors, xpij (p = 1, ..., P). Then, the level-1 model is given by:

[5] ijpij

P

p
pjjij xy εββ ++= ∑

=1
0 .

Further, assume that there are Q level-2 predictors, zqj (q = 1, ..., Q). Then, the level-2
model for the intercept is given by:

[6a] j

Q

q
qjqj z 0

1
0000 δγγβ ++= ∑

=

,

and the level-2 model for the slopes is given by:

[6b] pj

Q

q
qjpqppj z δγγβ ++= ∑

=1
0 .

Substitution of equations [6a]-[6b] into equation [5] gives the general li near 2-level
model:

[7] ij

P

p
pijpjj

P

p

Q

q

P

p
pijqjpqpijp

Q

q
qjqij xxzxzy εδδγγγγ ++++++= ∑∑ ∑∑∑

== = == 1
0

1 1 1
0

1
000 .

The meaning of the various components in this equation is identical to that in equation
[3].

The general model contains a wide variety of sub-models that are well -known in
politi cal science. Table 1 lists these models with the components of equation [7] that are
required to derive them. Although all of these models are familiar, we shall spend some
time describing each.
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Table 1:
The General Multilevel Model and Its Sub-Models

Model Components Included

Model Parameter
Noise

Level-1
Predictors

Level-2
Predictors

General Multil evel Model
Random Coefficients Model
Means-as-Outcomes Model
Random Effects ANOVA
Interactive Contextual Model
Fixed Effects ANOVA

Yes
Yes
Yes
Yes
No
No

Yes
Yes
No
No
Yes
No

Yes
No
Yes
No
Yes
No

(1) Random Coefficients Model. In the random coeff icients model, which is widely
used in the analysis of pooled cross-sections and time-series data (e.g., Dielman 1989;
Stimson 1985), the level-2 predictors are dropped from equations [6a] and [6b]. Thus, the
level-1 parameters are conceived of as simple functions of a constant effect and random
noise. This conceptualization results in the following model:

ij

P

p
pijpjj

P

p
pijpij xxy εδδγγ ++++= ∑∑

== 1
0

1
000 .

The level-2 predictors and cross-level interactions disappear from the general multil evel
model, but the disturbances remain heteroskedastic and serially correlated.

(2) Means-as-Outcomes Model. In this model no level-1 predictors are included, so
that the level-1 model simply consists of an intercept that is allowed to vary contextually.
However, the model for this intercept does include level-2 predictors. Consequently the
model is given by:

ijj

Q

q
qjqij zy εδγγ +++= ∑

=
0

1
000 ,

so that the mean of yij is considered to be the outcome of contextual factors:

∑
=

+=
Q

q
qjqij zyE

1
000][ γγ . The disturbances for this model, ijjiju εδ += 0 , are

homoskedastic ( 2
00][ στ +=ijuV ) but serially correlated ( 0],[ 00 ≠= τkjij uuCov ).

(3) Random Effects ANOVA. The means-as-outcomes model can be modified by
dropping the level-2 predictors from the model. This results in the random effects
ANOVA model:

ijjijy εδγ ++= 000 ,
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where 00γ  is the grand mean of yij. Random effects ANOVA is useful when the treatment

levels are not considered fixed but sampled from a “population” of treatments (see
Maxwell and Delaney 1989).

(4) Interactive Contextual Model. If the disturbances are removed from the level-2
model equations, the interactive contextual model that we discussed earlier is obtained.
As noted before, the implicit assumption of this model is that the level-1 disturbances
(which are the only disturbances left) are homoskedastic and not serially correlated.
These are the assumptions of classical li near regression analysis.

(5) Fixed Effects ANOVA. Fixed effects ANOVA can be thought of as a modification
of random effects ANOVA. Rather than assuming that the treatments are sampled, they
are thought of as fixed: in each imaginable iteration of an experiment the same levels
would be chosen over and over again. This being the case, parameter noise – which
would arise from treatment sampling fluctuations – can be ignored. Consequently, we
obtain the following model:

ijijy εγ += 00 ,

where γ 00  is the grand mean of yij.

Extensions: Higher-Order Multilevel Models
The multil evel model cannot just be expanded to incorporate multiple predictors, it can
also be extended across more than two levels of analysis. The basic logic here is a
straightforward extension of the 2-level model: parameters at each level of analysis are
allowed to vary contextually over the next-higher level of analysis, with the parameters at
the highest level of analysis considered as fixed.

We can ill ustrate this logic for a three-level model (for example, of voters nested
in different time periods in different states). Let yij k denote the dependent variable, with
the added subscript k referring to the level-3 units (e.g., states). Then the level-1 model
can be written as:

ijkpijk

P

p
pjkjkijk xy εββ ++= ∑

=1
0 .

The parameters β  are allowed to vary contextually across the level-2 units (for example,
they could be time-varying parameters if the level-2 units are time periods) according to:

jkqjk

Q

q
qkkjk z 0

1
0000 δγγβ ++= ∑

=

pjk

Q

q
qjkpqkkppjk z δγγβ ++= ∑

=1
0 .

Finally, the parameters γ  are allowed to vary contextually across the level-3 units.
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Assuming S level-3 predictors, wsk, with fixed effects λ , this implies the following set of
equations:

ksk

S

s
sk w 00

1
0000000 νλλγ ++= ∑

=

qk

S

s
skqsqqk w 0

1
0000 νλλγ ++= ∑

=

kpsk

S

s
sppkp w 0

1
0000 νλλγ ++= ∑

=

pqksk

S

s
pqspqpqk w νλλγ ++= ∑

=1
0 .

The structure that these seven equations produce is highly complex. Among other
things, it contains main effects for the level-1, level-2, and level-3 predictors, double
cross-level interactions, and triple cross-level interactions. In addition, the 3-level model
contains an exceedingly complex disturbance term. Needless to say, extensions of the
multil evel model to an even greater number of levels produce still more complex
structures.

With recent advances in computational power, most software packages will now
permit the analysis of at least 3-level models, with some allowing as many as nine levels
of analysis (although cross-level interactions are usually not permitted in this case).
However, we caution against moving beyond 2-level models, for two reasons. First, as
the number of levels increases ever greater demands are placed on the data for estimating
the parameters, in particular the variance components. As we will see, in these cases it
becomes criti cal that suff iciently large numbers of level-2 and level-3 units are available
and in we doubt this will be the case in most politi cal science data sets. Second, the
interpretation of complex multi -level models is very tricky. It forces us to think about
contextually determined effects, in which the contextual determination is itself
contextually determined, and so on. Perhaps as a general statement about the world, a
supposition of such contingent contingencies is true, but it hardly makes for parsimony
and it may well cause bewilderment rather than insight into the linkages between
different levels of analysis. Thus, our recommendation is to refrain from using more than
two levels, unless one has a clear rationale for including more levels and strong
expectations about the nature of the effects and their contingencies.

Extensions: Nonlinear Multilevel Models
Another way in which multil evel analysis can be extended is by dropping the linearity
assumption that has characterized our discussion thus far. Recent developments in
multil evel analysis now permit for nonlinear model specifications and this opens the door
to modeling discrete responses, event duration data, and counts.

The simplest multil evel model for discrete responses is that for binary variables.
The most common model for such variables is the multil evel logit model, which modifies
the linear multil evel model by specifying a logit li nk function (Goldstein 1991, 1995).
Thus, the outcome of interest is the proportion of cases, ijπ  , that fall i nto category 1 of
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the binary outcome measure and the multil evel model for this proportion can be written
in terms of the log-odds ratio:

ij

P

p
pijpjj

P

p

Q

q

P

p
pijqjpqpijp

Q

q
qjq

ij

ij xxzxz εδδγγγγ
π

π
++++++=










− ∑∑ ∑∑∑

== = == 1
0

1 1 1
0

1
0001

ln .

It is conventional in this specification to set 1][ 2 == σε ijV , as is done in conventional

logit models. However, the multil evel disturbance term continues to be heteroskedastic
and estimation of the logit parameters is conducted assuming such heteroskedasticity (as
opposed to homoskedasticity, as is the case with estimating conventional logit models).24

Most multil evel software packages require the use of a logit li nk function in the
analysis of binary data. However, there has been some movement toward the use of the
probit li nk function. Thus, the program MIXOR (Hedeker and Gibbons 1996) allows the
user to either choose the logit or probit li nk function. Future simulation studies are
needed to determine which of these functions behaves best in the context of multil evel
analysis.

Another development associated with the program MIXOR is to extend multilevel
analysis to ordinal dependent variables. Here the user again has a choice between logit or
probit li nk functions, both of which are available in MIXOR. The statistical theory
behind ordered multil evel logit and probit models is set out in Hedeker and Gibbons
(1994; also see Goldstein 1995).25

Models for counts are also estimable in multil evel analysis by specifying a
multil evel Poisson regression model (see Goldstein 1991, 1995). The outcome of interest
in this model is the expected number of level-1 units displaying a particular outcome, nij

a ,

where the superscript a refers to the outcome of interest. This number can be expressed
as:

a
ijj

a
ij nn π= ,

where nj denotes the number of level-1 units in the jth level-2 unit and a
ijπ  denotes the

probabili ty of outcome a in the level-1 units. Most multil evel software packages proceed
by modeling this probabili ty using a log link function. Thus, the multil evel Poisson
regression model can be written as:

( ) a
ijpij

a
pj

P

p

a
jpijqj
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pq

P

p
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p
pij
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p
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q
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q
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ij xxzxz εδδγγγγπ ++++++= ∑∑ ∑∑∑

== = == 1
0

1 1 1
0

1
000ln .

Typically, the variance of the level-1 disturbance term is set to 1 (which is in keeping
with the assumption that it follows a Poisson distribution [Golstein 1995]). The
multil evel disturbance term, however, is again heteroskedastic (and serially correlated).

From event counts it is possible to move to event duration models. Goldstein
(1995) provides a discussion of various forms of the multil evel event history model.  The
motivation for multil evel methods as applied to event histories is the idea that individuals
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or durations may be nested within some higher level unit and therefore, trajectories,
failure times, and the like, may be influenced by variables measured at the extra
individual-level.  Although use of multil evel event history methods as not been
widespread in the social sciences, especially politi cal science, the methodology would
seem very appropriate for many research questions, and particularly amenable to
modeling heterogeneity problems that are rampant in politi cal event history data (see
Box-Steffensmeier and Jones 1997).

STATISTICAL THEORY

In the previous section we established that multil evel models are conceptually
distinctive. They are also statistically distinctive, however, finding their roots in a body of
statistical theory that is not common to politi cal methodology. In this section we shall
describe this theory, paying attention to the fundamental principles of estimation and
testing of multil evel models. Since this is still an evolving field in the statistical lit erature,
we shall discuss both mainstream and alternative approaches in the ensuing discussion,
although we should note that only the mainstream approaches are currently implemented
in standard multil evel software.

Preliminaries
To simpli fy the discussion of estimation theory, it is convenient to re-express the

general multil evel model of equations [5]-[7] in terms of matrices and vectors. To do so,
we collect the responses of all l evel-1 units in the j th level-2 unit in a nj × 1 vector yj.
Similarly, the responses on the level-1 predictors are collected into the nj × (P + 1) matrix
Xj, which also includes the level-1 constant, and the level-1 disturbances are collected in
the nj × 1 vector εεj. Finally, the level-1 coefficients are collected in the (P + 1) × 1 vector
ββj. This allows us to express the level-1 model as:

[8] y Xj j j j= +ββ εε .

Furthermore, we collect all l evel-2 predictors into the (P + 1) × (Q + 1) matrix Zj,
which includes the level-2 constant, all l evel-2 disturbances into the (P + 1) × 1 vector δδj,
and all l evel-2 coeff icients into the (Q + 1) × 1 vector γγ. This gives the following
expression for the level-2 model:

[9] ββ γγ δδj j j= +Z .

Substitution of equation [9] into equation [8] gives the expanded form of the multil evel
model:

[10] y X Z Xj j j j j j= + +γγ δδ εε .

To complete the multil evel model we restate assumptions A.1.-A.2.:
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εε j N~ ( , )0 Iσ 2

δδ j N~ ( , )0 T ,

where T is the variance-covariance matrix of the level-2 disturbances.

Estimation Theory
The most common method for estimating multil evel models is maximum

likelihood estimation (MLE), whereby the fixed effects, level-1 coeff icients, and variance
components are estimated simultaneously. However, conceptually it is easier when we
think of the estimation of the fixed effects, level-1 coeff icients, and variance components
as separate steps. When we do so, it becomes apparent that the estimation of multil evel
models entails a mixture of generalized least squares (GLS), empirical Bayes (EB), and
MLE methods.

Variance Components. Estimation of the variance components is the most controversial
aspect of the estimation theory of multil evel models. Many programs estimate the
variances of the disturbances through Full MLE (FML). This entails minimization of the
deviance of the data, where deviance is defined as –2 times the log-likelihood function
(for details and formulae see Bryk and Raudenbush 1992; De Leeuw and Kreft 1986;
Longford 1993). However, other programs utili ze a modification of MLE that is known
as Restricted MLE (REML; Harvill e 1977). This method does not minimize the deviance
of the data but the deviance of the least squares residuals (see Bryk and Raudenbush
1992; De Leeuw and Liu 1993; Longford 1993).

Many researchers advocate the use of RMLE, especially in small samples. The
reason is that FML, while consistent and asymptotically efficient, does not adjust for the
number of f ixed effects that are estimated and hence tends to be biased. REML makes
this adjustment and is hence, at least theoretically, the better of the two estimators.26 This
superiority should be evident, in particular, with small samples of level-2 units. The FML

variance components will t end to be underestimated by a factor 
J Q

J

− +( )1
 compared to

the REML variance components. For small samples of level-2 units (J is small ), this
reduction can be substantial. However, in large samples of level-2 units the reduction is
generally uninteresting (see Cressie and Lahiri 1993).

Whether the differences between FML and REML are truly as dramatic in
practical applications of multil evel modeling as the advocates of REML have sometimes
suggested remains to be seen. Simulated comparisons of the two methods have not
generated a clear picture of the circumstances under which one or the other method is
preferred (Swallow and Monahan 1984). Evidence that we have seen (e.g., Kreft, De
Leeuw, and Van Der Leeden 1994) fails to show dramatic differences in the FML and
REML variance components, but this may be peculiar to the data that were used. Given
the considerable unclarity about the status of FML and REML,27 we suggest that users
will t ry to use both and compare results. Alternatively, an entirely different approach to
estimation could be taken, a topic that we shall address below.
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Fixed Effects. Estimation of the fixed effects vector γγ can be based on equation [9]. One
approach would be to employ ordinary least squares (OLS), so that:

( )� ' 'γγ ββ=
−

Z Z Zj j j j

1

.

Of course, ββj is unknown, but it can be estimated from equation [8] using OLS:

( )� ' 'ββ j j j j j=
−

X X X y
1

.

This is the approach of traditional contextual analysis (Boyd and Iversen 1979; also see
Hanushek 1974). An important drawback of this approach is, however, that it does not

take into account that �ββ j  is usually estimated with different levels of precision in

different groups, if only because the sample sizes in the different groups differ. As a
consequence, �γγ  is not BLUE (best linear unbiased), except in the special case of a
balanced design in which the sample sizes for all l evel-2 units are identical.

A better approach is to use a precision-weighted estimator that gives greatest
weight to those estimates of  ββj that are the most precise. This can be done via
generalized least squares:

( )~ ' 'γγ ∆∆ ∆∆ ββ= − − −Z Z Zj j j j j j
1

1
1 ,

where ∆∆ j is the weight matrix. The only problem is now to define ∆∆ j . Since we want to

precision-weight the estimates of ββj, it makes sense to base ∆∆ j on the dispersion matrix of

�ββ j . It is easily demonstrated that this dispersion matrix takes the form

( )∆∆ j j j j= + = +
−

T V T X Xσ2
1

' ,

where T is the variance-covariance matrix for δδj and Vj is the normal OLS dispersion
matrix.28 We can think of ∆∆ j  as consisting of two parts. The first part, T, gives parameter

dispersion: random variance in the parameters. The second part, Vj, gives the variance of
the level-1 noise. This can be thought of as error dispersion, as it reflects the true lack of
fit of the model (see Bryk and Raudenbush 1992). In practice, ∆∆ j  is of course estimated,

using the FML or REML variance component estimates.
The GLS estimator has several desirable properties. First, it is unique and BLUE.

Second, the estimator is responsive to the data. When a sub-group sample is small , for
example, the estimate of σ2  tends to increase because the degrees of freedom are
smaller. Consequently, the data from the sub-group will not be weighted as much in
determining the estimate of the fixed effect. Finally, although they will receive less
weight, even sparse samples can contribute to the estimation of ~γγ . Thus, no information
needs to be thrown away. Moreover, since the estimation of ~γγ  is based on information
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from all sub-groups, it does not matter very much if the sub-groups are small as long as
the total sample size is large enough.29

Level-1 Coefficients. The estimation of the variance components and fixed effects is
suff icient for evaluating the complete multil evel model of equation [10]. However, often
it is important to also obtain estimates for level-1 coefficients for specific sub-groups.
Indeed, such estimates are invaluable for the interpretation of multil evel models (see
below) and should be obtained routinely as part of the output from multil evel software.

From a statistical perspective, two different estimators of the level-1 coeff icients
are available. First, one could simply consider the data of the sub-group of interest and
obtain OLS estimates based on only those data. This approach focuses on the level-1
units in a particular sub-group and uses equation [8] for that group. The resulting

estimates are collected in �ββ j .

Alternatively, it is possible to use equation [9] to obtain estimates of the level-1
coeff icients for a sub-group. This approach focuses on the level-2 units and utili zes the

principle that E Ej j j j j[ ] [ ]ββ ββ γγ δδ γγ= = + =Z Z , so that �� ~ββ γγj j= Z . Thus, by taking the

estimates of the fixed effect and the sub-group information for the level-2 predictors it is
possible to construct estimates of the level-1 coeff icients.

Under the usual assumption of correctly specified (level-1 and level-2) models,
the two alternative estimators for the level-1 coeff icients are both unbiased. However,
they are generally not equally precise. This yields a useful criterion for combining the
two estimators: we can take their weighted average, where the weight attached to an
estimator is determined by its precision. The resulting estimator is an empirical Bayes
(EB) estimator that, as we shall , see has several attractive properties.30

The weights used to obtain the EB estimates are given by:

ΛΛ j j= + −T T V( ) 1 ,

which is the ratio of parameter dispersion over total dispersion (parameter dispersion plus
error dispersion). Using these weights the EB estimator for the level-1 coeff icients is:

~ � ( ) �
�ββ ΛΛ ββ ΛΛ ββj j j j j= + −I .

When the error dispersion is zero, ΛΛ j = I , and 
~ �ββ ββj j= . When the parameter dispersion

is 0, ΛΛ j = 0 , and 
~ ��ββ ββj j= . In other cases, 

~
ββ j  shrinks to the most precise estimator, hence

the alternative term of shrinkage estimation to denote EB.
EB estimation of the level-1 coeff icients has several desirable properties. First, it

can be demonstrated that the EB estimator produces a smaller mean-squared error than
other estimators (Carlin and Louis 1996; Lindley and Smith 1972). Second, the EB
estimator allows reliable estimation of level-1 coeff icients even in sub-groups that are
very sparsely populated. This is because the estimator considers ~γγ  which, as we have
seen, is based on information from all sub-groups. Thus, other sub-groups can help in the
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estimation of level-1 coefficients for sparsely populated sub-groups. This is often
particularly desirable in comparative research, because problems of micronumerosity are
common in this field (Western 1997; Western and Jackman 1995).

Estimation in Practice. Although several attempts at non-iterative estimation have been
made (De Leeuw and Kreft 1986), most multil evel programs utili ze an iterative
procedure whereby the variance components and fixed effects are continuously and
simultaneously updated until convergence takes place. A variety of algorithms are in use,
including EM (implemented in HLM), iterative generalized least squares (implemented in
ML3), and Fisher scoring (implemented in VARCL). Of these algorithms, EM tends to be
the slowest and also is least likely to reveal problems when the model is off (see De
Leeuw and Kreft 1995; Kreft, De Leeuw and Van Der Leeden 1994).

Alternative Estimators. While GLS and EB are central to all currently available
multil evel programs, these estimators have always had their detractors. The general
criti cism is that both estimators criti cally depend on estimates of the variance and
covariance components of the model, but neither one acknowledges that there may be
uncertainty over these components (Bryk and Raudenbush 1992). Put differently, the
FML and REML (co)variance component estimates are incorporated into GLS and EB as
point estimates with a prior probabili ty of one attached to them. But the specification of
such a prior seems overly optimistic, in particular when the number of level-2 units is
small . After all , in these cases conventional statistical theory indicates that estimators
may not be very stable and that a slightly different sample could have produced rather
different estimates.

To incorporate uncertainty over (co)variance components, three approaches have
been proposed. The first, is to simply adjust the GLS and EB estimators by incorporating
estimates of the sampling variance of the (co)variance components (Morris 1983; Kackar
and Harvill e 1984), possibly via bootstrapping (Laird and Louis 1987). To date, this
approach has only been implemented for very simple multil evel models and there is
considerable doubt that its implementation in more complex cases is straightforward
(Seltzer, Wong and Bryk 1996).

The second approach is to use a fully Bayesian analysis in which priors are
defined over all parameters, including the (co)variance components. However, this
approach is very demanding and has been implemented only for simple models (Rubin
1981). Moreover, the use of a fully Bayesian approach introduces its own uncertainties.
What prior distribution should be specified, for example, for the variance components?
Our theories of contextually determined behavior may be too limited to provide much
guidance to questions like this, making the use of the fully Bayesian approach diff icult –
more a future prospect, than a viable research strategy at the present.

The third approach is to use data augmentation in a Bayesian approach, i.e., to use
a Gibbs sampler. In this approach, which belongs to the set of Markov Chain Monte
Carlo algorithms, the joint prior distribution over the parameters is subdivided so that it is
possible the sample conditionally from the posterior of one parameter, taking the other
parameters as given. Repeated sampling gives the desired information to make inferences
(see Goldstein 1995).

Applications of the Gibbs sampler in multil evel analysis have been quite
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successful, although computationally demanding (Seltzer, Wong and Bryk 1996; Zeger
and Karim 1991). We believe that this approach holds great promise in the future for
multil evel modeling in general, and applications in politi cal science specifically.
Multil evel data structures in politi cal science often contain few level-2 units, making
uncertainty over (co)variance components a legitimate issue. However, at present we do
not envision wide scale use of the Gibbs sampler in practical applications of multil evel
models, since currently no software exists to implement the procedure and since it has
some problems itself, such as the diff iculties involved in assessing conversion. For this
reason none of the applications in this paper are based on the Gibbs sampler.

Hypothesis Testing
An important part of multil evel modeling involves testing parameters and models

to see which parts of the multil evel model are statistically important. Hypothesis tests for
multil evel models are readily available, although there is some disagreement over the
appropriate test statistics.

Testing Models. The use of multil evel analysis will almost surely involve the assessment
of different models. Presently there is no method of assessing the fit of a model by itself –
the way there is, for example, in covariance structure analysis. At best there are
diagnostics, most importantly the deviance and related statistics such as Akaike’s
Information Criterion and Schwarz’s Bayesian Information Criterion. For all of these
diagnostics the general rule of thumb is that smaller values are better, although one can
never be sure how small i s good enough.

A test is available when one model is pitted against another model. To do so we
assume that the smaller of these models is nested within the larger model. Let D1 denote
the deviance for the smaller model and D2 the deviance of the larger model, and let m
denote the difference in the number of estimated parameters (fixed effects and
(co)variance components). Then,

D D m1 2
2− ~ χ ,

where χm
2  denotes the χ2 -distribution with m degrees of freedom.

To implement this test procedure, it is useful to settle on a baseline model for
comparison. In many contexts, a useful baseline would be a fixed effects model that only
contains level-1 predictors. From there on one can move to a random coeff icients model
to assess whether there is significant parameter dispersion. If this is the case, the third
model that can be fitted is one that includes level-2 predictors of the intercept and/or
level-2 predictors for slopes. An application of this model testing sequence can be found
in the Illustrations section of this paper.

Testing Individual Variance Components. Tests of individual variance components
typically involve the null hypothesis H0: τpp = 0, where τpp denotes a particular diagonal
element in the matrix T. There are at least three different recommendations for
performing a test of this hypothesis. First, Goldstein (1995) suggests the use of the model
comparison test. Here two models are estimated, one including the (co)variance
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component and the other omitting it, and the difference in deviances is referred to a χ2 -

distribution. The advantage of this test procedure is that it can be readily extended to a
joint test of multiple (co)variance components.

A second approach is to take the ratio of the square root of the variance
component and its estimated standard error and refer this to a student’s t-distribution with
J – Q – 1 degrees of freedom (see Longford 1993). This approach works well when a
(co)variance component is large but is suspect when it is close to 0, in which case the
symmetry of the student’s t-distribution is usually inappropriate (Bryk and Raudenbush
1992).

The third approach is to obtain a χ2 -distributed test statistic for a (co)variance

component. This can be done by taking the sum of squared residuals for a particular
level-2 model and dividing this by the estimate variance of the variance component
involved in this model. The resulting test statistic follows a χ2 -distribution with J – Q – 1

degrees of freedom. This approach works well even when variance components are close
to 0 and has the advantage over the model comparison approach that it is not necessary to
estimate multiple models. However, this approach is not available in all software
packages, with many relying on the student’s t-distribution instead.

Testing Individual Fixed Effects. The model comparison approach can also be used to test
the significance of individual fixed effects, but this is conventionally not done. The
typical approach is akin to tests of f ixed effects in classical li near regression and involves
evaluating the test statistic:

~

� [~ ]

γ

γ
pq

pqV

for the null hypothesis H0:γpq = 0. This test statistic is referred to a student’s t-distribution
with J – Q – 1 degrees of freedom.

Other Tests. It is also possible to perform significance tests on level-1 coefficients in
particular sub-groups. We shall not discuss such tests (see Bryk and Raudenbush 1992)
because we would like to discourage them. First, given that level-1 coefficients would be
tested in many sub-groups, one should be very careful in interpreting significance levels.
Indeed, with so many tests Bonferroni adjustments would almost surely be necessary.
More serious, however, is the fact that the tests (even with Bonferroni adjustments) will
be too liberal, unless there are many level-2 units (Bryk and Raudenbush 1992).

We believe that significance tests of level-1 parameters are often used as an
interpretative device to determine in which sub-groups an effect “matters.” However, if
this is the objective, then much better methods are available. One of these is to simply
graph the regression lines for different sub-groups and eyeball the results. This gives
insight in the substantive significance of level-1 predictors in particular sub-groups,
which is any way a better criterion for assessing if an effect “matters” than statistical
significance.
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Measures of Fit
Often researchers want to know how much variance they have explained. In regression
analysis this question is typically answered by referring to the coeff icient of
determination. It is possible to do the same in multil evel analysis, although in this case
not one but multiple coeff icients of determination will be obtained.

A coefficient of determination can first be defined for the level-1 model. Here the
objective is to assess the ratio of error variance over total variance. Longford (1993)
suggests the following R2-measure for this purpose:

R P
1
2

2

0
21= −

�
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σ
σ

,

where �σ P
2  is the least squares estimate of the residual level-1 variance for a model with P

level-1 predictors and �σ0
2  is the least squares estimate of the residual level-1 variance for

a model without any level-1 predictors. If the level-1 predictors can perfectly account for
the dependent variable, �σ P

2 0= , and R1
2 1= . If the level-1 predictors add nothing to the

explanation of the dependent variable, then � �σ σP
2

0
2= , and R1

2 0= .
A coefficient of determination can also be computed for each level-2 model. Here

the relevant comparison is between the parameter variance estimate for a random
coeff icients model and the parameter variance estimate for a model that contains level-2
predictors. Bryk and Raudenbush (1992) suggest the following R2-measure:
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where � ( )τ pp RCM denotes the estimated parameter variance for the random

coeff icient model (RCM), � ( )τ pp SIOM denotes the estimated parameter variance for the

slope or intercept as outcome model, and R p2
2  denotes the coeff icient determination for

the level-2 model for the pth level-1 coefficient.
As always, extreme care should be taken in the interpretation of the coefficient of

determination, especially since the coeff icients discussed here are unadjusted. We think
of these coeff icients as crude diagnostics of model performance. However, to truly assess
the comparative fit of different models, it is best to rely on the test that we outlined
earlier.

Model Specification
We want to conclude our discussion of the statistical theory of multil evel models

by considering the issue of model specification. The analysis of multil evel models
necessitates model specification choices that researchers do not ordinarily have to make,
and it is important to point out the issues that are involved. A first issue concerns
centering of the predictor variables, while a second issue concerns specification of the
(co)variance components.
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Centering of Predictors. In most statistical models predictors are included “as is,” i.e., as
they appear in the raw data. However, in multil evel models this often causes problems.
There are two reasons for this. First, the use of raw data often causes ill -conditioning,
especially in models with cross-level interactions (see Aiken and West 1991). Second, the
interpretation of multil evel results often suffers when predictors are incorporated in raw
form. For instance, the level-1 intercept cannot be easily interpreted when a zero score is
not a feasible outcome in the sample for any of the level-1 predictors. A similar argument
can be made for the level-2 intercept.

Centering, then, is criti cal to multil evel modeling.31 Indeed, it is so central that
several software packages (e.g., VARCL) automatically center the data before estimation.
In other cases it is left to the researcher to center the data. In this case there are generally
two strategies (other than not centering) for centering the level-1 predictors: centering
with respect to the grand mean, or centering with respect to sub-group means. For the
level-2 predictors there are only two choices: not centering or centering around the grand
mean.

In a recent review of the topic, Kreft, De Leeuw and Aiken (1995) conclude that
the question of how to center is primarily a theoretical one, for statistically speaking
different centering methods tend to yield equivalent results. The central question is what
theoretical interpretation one wants to give to the level-1 and level-2 intercepts. In the
absence of centering, the level-1 intercept is the expected value of the dependent variable
when all l evel-1 predictors are 0. Moreover, the level-2 intercepts give the expected
values of the level-1 intercepts and slopes when all l evel-2 predictors are 0. For these
interpretations to have any validity, the zero-scores on level-1 and level-2 predictors
should occur in the sample. When the level-1 and level-2 predictors are centered around
the grand mean, the level-1 intercept gives the expected value of the dependent variable
for level-1 units whose score on the level-1 predictors is the average across all l evel-2
predictors. In this case, the level-2 intercepts give the expected values of the level-1
intercepts and slopes for cases whose level-2 predictor score is the average. Finally, if the
level-1 predictors are centered around the group mean, then the level-1 intercept gives the
expected value of the dependent variable assuming that a level-1 unit’s scores on the
predictors are the average in a particular group.

One way to conceptualize the different centering methods is to consider what they
call attention to. Adopting the natural metric of the level-1 and level-2 predictors (without
centering) calls attention to a zero-score on those predictors – this score stands out. This
makes perfect sense, for example, when the 0-score refers to a control group to which we
want to make comparisons. Centering around the grand mean calls attention to the typical
values for the level-1 predictors, regardless of where these values occur in terms of level-
2 units. This type of centering is often useful when the primary interest is in the level-1
units and one wishes to assess the impact of level-1 predictors against some baseline
value of the predictor for those units. Finally, centering around the sub-group means calls
attention to context. The primary interest is now in the typical value of level-1 predictors
within specific contexts and effects of these predictors are assessed against this baseline.
This strategy may be particularly useful i f there is a great deal of between sub-group
variance in the level-1 predictor means, so that it makes sense to adopt different reference
points for effects in different sub-groups. On the other hand, the smaller the between sub-
group variance in level-1 predictor means is, the less relevant the choice between
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centering around the grand mean and centering around the sub-group means becomes.

Minimum Specifications of (Co)Variance Components. Specification of the elements of
the matrix of variance and covariance components should be driven primarily by
theoretical considerations. Every estimated variance component in this matrix implies
that one assumes some stochastic variation in a level-1 coeff icient, and every estimated
covariance component implies that one assumes that stochastic fluctuation in one level-1
coeff icient are systematically related to stochastic fluctuations in another level-1
coeff icient.

In general, social scientists have generally stronger theoretical reasons to specify
variance components than covariance components. In practice, this implies that
researchers often do not include all possible covariance components, since some may not
be theoretically meaningful or interpretable. We see no problems with this practice,
which can cut down considerably on computation time, except under three circumstances.

First, it is recommended that a covariance between the level-1 slopes and
intercepts is always included. This is important because it typically is the case that level-2
units with distinctive values on the intercept also show distinctive values on the slope.
Second, for obvious reasons, covariance components should be specified for dummy
predictors that capture categories in the same underlying categorical variable. Finally,
when one level-1 predictor is derived from one or several other predictors, it is advisable
to specify covariance components between their slopes. This is most relevant in cases in
polynomial type models or models containing interactions between level-1 predictors.

APPLICATIONS

The Ideological Basis of Support for European Integration
Background. Studies of support for European integration typically come in two

forms. The first consists of aggregate level data and focuses mostly on cross-national
variations and time trends in the average level of support (Eichenberg and Dalton 1993).
The second consists of individual level data and focuses on factors that may lead
individual citizens to support or oppose the EU (Deflem and Pampel 1996, Janssen
1991). Studies that combine the different types of data are few and far between, and when
they have been conducted the primary focus in the individual level data has been mostly
on objective demographic factors (Gabel and Palmer 1995). There may be a simple
reason for this: subjective individual-level factors have been notoriously poor predictors
of EU support, exerting miniscule effects, and any attempt at including them in an
analysis seem doomed from the outset.

The analysis of the role of politi cal ideology (left-right self-placement) provides a
case in point. Wessels (1995) concludes, for example, that the effect of ideology on EU
support is very weak. While, Deflem and Pampel (1996) do not draw this conclusion
themselves, the ideology effect that they report is among the weakest in their analysis.

The question is why ideology plays such a small role in determining EU support.
One could conclude that the issue of European integration is simply not ideological in
nature. This may well be true, but before accepting this conclusion we should examine at
least one alternative explanation, namely contextual variation in the impact of ideology. It
is possible that ideology plays an important role in some countries but not others and that
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sometimes it exerts a positive effect and in other cases a negative effect. This is
consistent with the existing evidence (Wessels 1995) and also rings true from casual
observation of how politi cal parties from the left and right have positioned themselves on
the EU issue. For example, in the early 1990s ideological differences over EU support
between parties in Greece were non-existing, so that we would expect no effect from left-
right self-placement on EU support. In the same period, ideological differences over
European integration in Denmark and Britain were profound. However, in Denmark the
right favored integration, whereas in Britain it was the left (Labour). Thus we would
expect opposite effects for left-right self-placement in both countries. When these
contextual differences are ignored, as is so typically done in comparative studies of EU
support, it should not come as a surprise that the overall effect of ideology is so small –
the inconsistent effects of individual countries simply cancel each other out.

Multil evel models allow us to test this second possibil ity by testing whether the
variance component that is associated with ideology is statistically significant. If it is, this
is evidence for contextual variation. In this case, we may explore country-level factors
that can account for the contextual variation. This allows one to determine whether the
contextual variation is random or systematic, i.e., predictable on the basis of systematic
differences between countries. This layered approach, whereby we consider ever more
comprehensive models, will be ill ustrated in this example.

Models. We consider a simple model of EU support that is patterned after the work of
Deflem and Pampel (1996). The dependent variable here is a dichotomous measure of EU
support that is based on the following question in Eurobarometer 42.0: “Generally
speaking, do you think that (your country’s) membership of the European Union is a
good thing, a bad thing, or neither good nor bad?” We coded the response “good thing”
as 1 and the remaining responses as 0.

As predictors of this EU support measure we include age, gender, education,
subjective class, and ideology as predictors. The basic model allowing for contextual
variation, then, is:
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where the subscript j denotes a particular country and the variance of εij is fixed at 1.
We consider three special cases of this model. In the first one all contextual variation

is removed, so that in our notation of the multil evel model
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This produces the a standard logit model. In our second model specification, all effects
are considered fixed except for the intercept and the coeff icient for ideology. For these
two effects we stipulate the following equations:
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This results in a (partially) random coeff icients model.
The final model we consider introduces country-level predictors for β0j and β1j. We

consider three such predictors. First, we expect EU support among citizens to be greater
in countries in which politi cal parties are generally favorably disposed toward European
integration. This follows an elite-driven model of public opinion (Wessels 1995). Second,
we expect that EU support is less in countries in which the issue of European integration
is highly salient among politi cal parties, because this increase has typically been created
in a climate of deep internal divisions over integration. One dimension of such divisions
is ideology, so that we expect the effect of ideology to be stronger in countries in which
the EU issue was salient. Finally, the difference in EU support between parties of the left
and right may matter for average levels of EU support because it is one indicator of
internal division. Moreover, this predictor should interact significantly with ideological
self-placement. Specifically, in countries in which the left and right cannot be clearly
distinguished in terms of EU support, we should expect no effect of ideological self-
placement; in countries in which the left is clearly more pro-EU than the right, we should
expect citizens from the left to be more supportive than those from the right; and in
countries in which the right is most pro-EU, we should see the reversed pattern. Thus, our
third model includes the following level-2 equations:

β γ γ γ γ δ
β γ γ γ δ

0 00 01 02 03 0

5 50 52 53 5

j j

j j

PartySupport Salience Left Right Difference

Salience Left Right Difference

= + + + − +
= + + − +

Data and Measures. The data concerning level-1 (individual-level )predictors come from
Eurobarometer 42.0. Age is measured in years, education as the age at which the highest
level of education was completed, gender is coded 0 for women and 1 for men, subjective
class consists of f ive categories ranging from working class to upper class, and ideology
is measured on a 10-point scale where 1 indicates the extreme left and 10 the extreme
right.

The level-2 (country) data were collected by Ray (1997). Using an expert survey,
Ray coded the support level for European integration as well as the salience of this issue
for all parties in a country. The “Party Support” measure that we use is the average
support of all parties weighted by their electoral representation. Salience is similarly
defined. Finally, “Left-Right Difference” is a 3-category measure where –1 indicates that
the left is clearly more favorable toward European integration than the right, 0 indicates
that there are no clear differences between the left and right, and 1 indicates that the right
is clearly more favorable toward integration than the left.

We consider data for 9540 citizens from 11 countries: Belgium, Denmark, France,
Germany, Greece, Ireland, Italy, the Netherlands, Portugal, Spain, and the U.K. While the
number of level-2 units is not very large, we shall see that it is still possible to run a
multil evel analysis and obtain interesting results from it.
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Table 2:
Different Models of Support for European Integration a

Model 1 Model 2 Model 3
Effect Estimate est. s.e. Estimate est. s.e. estimate Est. s.e.

Level-1 Main Effects:
Constant
Age
Gender
Education
Class
Ideology

Level-2 Main Effects:
Party Support
Salience
Left-Right Difference

Cross-Level Interactions:
Ideology × Salience
Ideology × L-R Diff.

Variance Components:
Constant
Ideology

-.951*
-.003*
.232*
.055*
.215*
.024*

.175

.001

.044

.009

.022

.011

-1.204
-.001
.225*
.072*
.186*
.015

.271*

.023*

b

.001

.044

.009

.023

.047

.113c

.034c

8.948
-.002*
.233*
.073*
.193*

-.892*

-.387
-2.560*

-11.033

.291*

.080

.152*

.013*

b

.001

.045

.009

.023

.338

.369

.649
28.271

.108

.050

.086

.027

Deviance 12096.243 11473.015 11430.742

Notes: a Model 1-estimates were obtained in STATA using MLE; Model-2 and Model-3
estimates were obtained in VARCL using FML; b VARCL does not compute estimated standard
errors for the constant; c estimated standard error is for the square root of the variance component.
* p < .05

Results. Table 2 gives the VARCL results for the three different models of EU support
that we described. We shall first consider the relative fit of these models and will t hen
comment on the parameter estimates.  In terms of relative fit, Model 1 performs
significantly worse than Model 2: The difference in deviance for these two models is
623.228, which at 3 degrees of freedom results in  p = .000. Obviously, the poor fit of
Model 1 relative to Model 2 is due in large part to the constraint that the constant is the
same across all countries. However, this does not tell the entire story. When we compare
Model 2 to a modified version of Model 1 with a random constant, we still observe a
significant improvement in the fit of Model 2 (difference in deviance = 134.286, degrees
of freedom = 2, p = .000). On the other hand, Model 2 clearly fits the data worse than
Model 3: The difference in deviance is 42.273, which at 5 degrees of freedom gives p =
.000.

The variance component for the ideology effect in Model 2 is not very large
(.023), but clearly discernable from 0. We can use this variance component to obtain the
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EB estimates of the ideology coefficients in different countries. These coefficients are
depicted in the bar-chart in Figure 1. This figure lends support for our expectation that the
impact of ideology on EU support runs the gamut from fairly large negative to fairly
large positive effects. Fairly large negative effects are observed in the Netherlands and
the U.K., whereas fairly large positive effects are found for Denmark and Greece. The
latter two countries are also cases in which the salience of European integration to the
national parties was high. Moreover, in Denmark the rightist parties were clearly more
favorably disposed to European integration then the leftist parties, so that we should
expect a positive effect for ideology. In the U.K. by contrast, where European integration
was not very salient, it was the left that supported integration to a greater extent than the
right, so that we should expect the negative ideology effect that we obtain. Thus, salience
and left-right party differences seem to account for the patterns that we observe in Figure
1. The only anomaly here is the Netherlands, were we find right-leaning citizens to be
less supportive than left-leaning citizens, even if the differences between parties go in the
opposite direction. Moreover, salience of the EU issue was the lowest in this country, so
that we would theoretically not expect any effect from ideology. We expect, then, that the
EB estimates for Model 3 will continue to show the Netherlands as an anomalous case.

Figure 1:
Empirical Bayes (EB) Estimates of the Effect of Ideology in Different Nations

The estimates for Model 3 indicate that salience is the criti cal country-level
predictor of EU support. Not only does it exert a significant (and as expected, negative)
main-effect on the average support-level in a country, but it also interacts significantly
with ideology. The nature of this interaction is such, that ideology indeed obtains a
stronger effect the more salient the EU issue is. Moreover the effect changes from
negative in low salience conditions to positive in high salience conditions, reflecting the
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relative positions of Denmark and the U.K. None of the other level-2 predictors and
cross-level interactions is statistically significant.

One question we should ask is whether the inclusion of salience (and the other
level-2 predictors) is suff icient to eliminate the random variation in the constant and
ideology effects. Inspection of the variance components indicates that this is not the case.
While the variance components for these effects are about cut in half, they remain
statistically significant. This may be an indication that Model 3 is under-specified,
including too few level-2 predictors to account for the variation in constant and ideology
effects. Because of the residual parameter variance for ideology, the EB estimate for
anomalous case of the Netherlands remains sizable (-.155), as was expected.

Another question is what would happen if we were to ignore the residual random
variation after the inclusion of the level-2 predictors and the cross-level interactions. Put
differently, what problems would emerge if a contextual model were run that has the
standard logit error term. On the whole, it turns out that the parameter estimates of a
standard logit model are fairly close to those reported in Table 2 for Model 3. However,
there is one major exception to this. In an ordinary logit analysis the effect of Left-Right
Difference is estimated at only -.276, an indication, in our mind, of the problems that can
arise in logit models when there is substantial heteroskedasticity (as the significant
variance component for ideology implies). Moreover, the standard errors for the level-2
parameters and cross-level interactions are off in the standard logit model. As a
consequence, one would reach different conclusions in that model than one would in the
multil evel model. On statistical and theoretical grounds, the multil evel approach is
preferable and should hence be the method of choice, as far as we are concerned.

CAVEATS OF MULTILEVEL MODELING

Although we have argued that multil evel methods are very well suited for many
applications in comparative research, we would be remiss in not highlighting some
“ lowlights” of multil evel models.  Less negatively, there are several caveats to consider
before delving into multil evel modeling.  Indeed, we have been careful to point out some
of these pitfalls throughout and therefore, need not repeat ourselves here on issues of
centering, interpreting levels of data greater than two, and issues of estimator selection.
However, there are some conceptual issues worth discussing with regards to multil evel
modeling.

Statistical Theory is Evolving.  Although we discussed this earlier, this is one caveat that
does bear repeating.  For many of the models and estimators discussed in this paper, the
statistical theory underlying the methodology is still i n its infancy.  And while a
substantial body of statistics and econometrics has focused on random coeff icients
modeling (c.f. Swamy 1970, Hsiao 1986, Longford 1993),  relatively littl e attention until
recently, has been devoted to the issue of modeling multil evel data structures.
Consequently, the properties of some of the estimators discussed herein are, quite
frankly, not fully understood (Ita Kreft, personal communication).  Yet because so many
social theories, hypotheses, and data are hierarchically oriented, the “demand” and desire
for  these methods among applied researchers has substantially outweighed the “supply”
of statistical theory.  As a result, we caution that although one may be armed with
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“contextual data”, absent a very strong contextual theory, multil evel methods will be no
savior.

Should We Be Concerned With Modeling “ Context?”  While contextual explanations of
politi cal behavior are widespread in politi cal science, contextual analyses have been and
remain controversial.  At the heart of contextual modeling is an assumption that there is
something interesting about how individuals are nested within aggregate “units” (or how
level-1 units are nested within level-2 units).  How contextual units are defined widely
varies.  The simplest demarcation of a contextual unit is probably spatial or geographic.
Countries, states, departements, parishes, districts, and so forth, are easily definable, but
are they politi cally important?  As King (1996, 1997) has recently noted, the
geographer’s “modifiable areal unit problem” has substantial implications for politi cal
science, and in particular, contextual analysis.  Roughly stated, the modifiable areal unit
problem suggests that changes in the definition of the areal unit can,  and generally does,
elicit wild changes in interpretation of results (King 1997, 250-251).  In terms of
contextual analysis, arbitrary selection of contextual units or similarly, selection of units
because of ease in data gathering can very likely produce misleading, or worse, irrelevant
inferences.  King (1996, 1997) persuasively notes that the modifiable areal unit problem
is a theoretical problem and not an empirical problem.  With regard to combining
multiple levels of data, then, we stress that selection of the extra-individual unit must be
theoretically driven, or else analyses of such data will suffer from the equivalent of the
modifiable areal unit problem.

Blau (1980), in an essay on contexts and units in sociological research similarly
articulates the theoretical problem of determining what the “right” unit is in contextual
analyses.  Blau notes that the unit forming the context (i.e. the “influencer”) in some
studies may, in other studies, be the object of the influence:

In the sociological studies of social structures, the unit of analysis may range from small group
to entire societies.  Larger social structures encompass smaller ones, and the concepts and
variables relevant for their investigation are not the same.  Formal organizations can be the units
of analysis in one investigation, but they may be the social context in another investigation of a
narrower unit… . (Blau 1980 52).

An additional problem emerges when contextual units are treated as affili ational
or associational groups. Contextual “effects” may be misleading because of self-selection
bias (Hauser 1970; see also Hauser 1974).  If individuals can select to which groups they
are associated  (which of course, they can), then research designs demonstrating a group-
wise “social influence effect” may really be demonstrating nothing more than a self-
selection mechanism.  That is, the contextual effect is endogenous to the decision to join
the group in the first place.  And as Achen and Shively (1995) note, very littl e
advancement has been made in solving this problem of contextual analysis.

But a more general criti cism against contextual analysis has been leveled by King
(1996) who argues that context “doesn’ t count” when it comes to explanations of
individual-level politi cal behavior.  His argument, in part, centers on the premise that
contextual effects are rarely robust in explaining behavior.  Furthermore, politi cal
scientists should demonstrate that context does not “count” by theorizing and specifying
models that are invariant across contextual units.



www.manaraa.com

34

In general, we agree with each of these criti cisms of contextual analysis.
Demonstrating that individual-level outcomes vary across geographical units without
specifying the theoretical importance and significance of this variation is tantamount to
naming one’s residuals.  Spatial or “contextual” variation may be more-or-less a nuisance
and inclusion of variables that indicate, for example, region, may help alleviate
heterogeneity problems, but provide littl e substantive explanation of the politi cal
phenomenon.  And calli ng such findings “contextual effects” doesn’ t improve inference
making.  Nevertheless, we contend that theories of contextual influence, at least in some
quarters, extend well beyond the documentation and “discovery” of spatial variation.
Huckfeldt and Sprague (1987, 1993, 1995) explicitly cast their work in terms of social
interaction and not in terms of mere geographical variation.  Additionally, Huckfeldt and
Sprague, as well as other researchers (c.f. Przeworski 1974;  Brown 1981, 1988; Noelle-
Neumann 1984), have theorized that individual-level behavior cannot be understood
apart from context, and any attempt to do so would elicit problematic inferences.  This
avenue of contextual analysis is largely derived from the work of social theorists li ke
Durkheim, Bouden, Blau, and others who have theorized about the relationship between
the individual and collectivities.  The enterprise of contextual analysis, then, becomes an
attempt to link aggregates and individuals theoretically and meaningfully, and not to
solely demonstrate geographical variation.  If one has no theory on how and why these
levels of data relate, then contextual analysis devolves to the “naming your residuals”
problem discussed previously.  Additionally, if the aggregate-unit in which individuals
are nested is arbitrarily or atheoretically selected, then too, will analyses of data fail to
yield meaningful insights.

Measurement.  As more complex statistical models are developed to combine multiple
levels of data—the very models considered here—it seems clear to us that greater
attention will have to be paid to issues of measurement theory, validity, and reliabili ty
assessment.  How we define and measure concepts within the multil evel model is perhaps
an even bigger issue than with traditionally less complex methods.  Consider what is
going on even in the simplest multil evel models.  Lower level coeff icients are treated as
stochastic functions of variables created at a higher level.  The variances and covariances
within and between units are derived from level-1 coeff icients and the values of these
coeff icients are “shrunk” to either the individual or the group-level.  Level-2 coefficients
are heavily predicated on measurement of level-2 attributes.  But underlying these
fireworks is a hefty premium on measurement and reliabili ty. Bad measures in multil evel
models “get worse” because such a heavy demand is placed on the data in terms of
estimating level-1 and level-2 coefficients as well as the random parts.  As comparativists
move toward estimating these kind of models, we caution that substantial care needs to
be taken in understanding how the measure reflects the theoretical “contextual variable”
or gets at the appropriate individual-level variable.

CONCLUSION
In this paper, we have delineated the multil evel model in terms of comparative

contextual analysis.  Comparative analysis is replete with theories and hypotheses that
posit a relationship between variables measured at multiple levels. Standard
methodologies for combining multiple levels of data breakdown in important ways and
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therefore provide an avenue toward multil evel modeling.  Multil evel techniques provide
leverage in linking multiple levels of data while at the same time avoid the pitfalls
associated with traditional methods of dummy variable models, separate regressions, and
standard interactive approaches.
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NOTES
                                                          
1 Although it should be noted at the start that politi cal methodologists have wrestled with problems of
drawing inferences from multiple levels of data for some time (see  Shively 1969, 1974, 1987, Sprague
1976, 1982, Achen 1983, Achen and Shively 1995, King 1990, 1996, 1997,  just to name a few).  In
particularly, recent work by Achen and Shively (1995) and King (1997) has made significant inroads into
the ecological inference problem.  In this paper, we are concerned with the problem of combining
individual-level and aggregate-level data, and of course therefore are assuming the researcher actually
possesses individual-level data.  Jackson (1992) dealt with this problem in his paper on variable
coeff icients models and we rely heavily on the ideas initially forwarded by him.  Additionally, recent work
by Beck and Katz (1995, 1996a, 1996b) and  especially Western (1997), have examined the properties and
application issues of random coefficients models for comparative politi cal analysis.
2 Although we are contrasting “ individual-level” data with “aggregate-level” data, one need not perform
analyses at the individual-level to use multil evel models.  Multil evel approaches are generally applicable
when one has data hierarchically nested (and one has a theory on how the multiple levels of data are
related!).  Thus, Western’s (1997) work on multil evel models treats institutional attributes of countries as
the lower-order unit and models unemployment rates across time.
3 In contrasting “ traditional” thick description methods with quantitative approaches, we do not intend to
fan the fires of this debate in cross-area analysis.  We think qualitative methods are an invaluable
component to cross-area analysis and, if suitably rigorous in design (see King, Keohane, and Verba 1994),
can yield inferences in many cases far stronger than quantitative models.
4 King (1996) has recently called into the question the importance of actually modeling context.  Later in
the paper, we address King’s argument.  For now, we are assuming that “contextual variation” is a concern
to cross-area analysts (although as we argue later, one need not model “context” to appropriately use
multil evel models).
5 Although important quantitative analyses of “small-n” cross-area data have been produced.  See, for
example,  Lange and Garrett (1985), Garrett and Lange (1989) and Beck, Katz, Alvarez, Garrett, and Lange
(1993).
6 Although we suspect that in some quarters of cross-area research, King’s (1997) solution will be viewed
skeptically by those adhering to the view that aggregates posses “emergent properties.”  Because of these
properties, aggregates (for example collectivities of individuals) possess a “reali ty” of their own making it
impossible to decompose them into individual-level inferences.  For example, Agnew (1996b) refers to
King’s ecological inference work as “ontological (and methodological) individualism” (165, parentheses in
original).  We generally agree with Achen and Shively’s (1995) assessment of this view.  They argue that
“emergent properties” arguments, which are derived from social theorists like Durkheim , very often induce
fallacious reasoning about aggregate data.  As Achen and Shively note “ [t]he Durkheimian beauties of
emergent properties have often bedazzled researchers.  Too much of the sociological lit erature on
contextual effects has consisted of singing the theoretical praises of holistic effects, arguing the substantive
plausibili ty of contextual effects, and then showing statistical biases due to aggregation effects, without
noticing that meanings have shifted along the way” (Achen and Shively 1995 221).
7 Clearly, individual-level comparative politi cal data have been available for some time.  Inglehart (1977)
used individual-level data from the early Seventies to develop his theory of post-materialist values.   The
“development” we speak of really centers on the emergence of a diverse set  of individual-level data
collected across many global regions.
8 And of course, in the United States, extensive individual-level and aggregate-level data have been
available for decades from a variety of sources.
9 Jackson (1992) also uses the example of legislative voting as a motivation for random coefficients
models.
10 Of course Hauser’s (1970) admonitions are extremely relevant here.  Hauser notes that group
membership is largely self-selective.  Thus, so-called “contextual effects” of group affili ation may reflect
nothing more than selection biases, and not some group-level dynamic.  We discuss in more detail at the
end of the paper, some of Hauser’s concerns with contextual analysis.
11 Sociologist Peter Blau (1977, 1989) has been instrumental in theorizing about these kinds of social
networks.  Blau has argued that group or social identification is largely a function of demographic and
socioeconomic factors such that individuals tend to identify more with individuals who possess similar
attributes.  Thus, geographical or famili al connections are less important in terms of social networks than
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demographic-based and socioeconomic-based ties.  This kind of linkage or social context has prompted the
concept of “Blau Space” (McPherson and Ranger-Moore 1991).
12 Indeed,  Mason, Wong, and Entwistle’s (1983) early work on multi level analysis was explicitly cast in
terms of models for contextual analysis.
13 In this context, the Chow test is simply an F test.
14 Furthermore, it is not clear how useful this kind of testing is at all!  Bartels’ (1996) important work on the
issue of pooling disparate observations suggests that F-tests of this sort frequently fail to test what “analysts
need done” (Bartels 1996, 935).  He notes that this test only focuses on goodness-of-fit and not on
differences in parameter values.
15 Beck (1985) in regard to time series data, and Rivers (1988) in regard to cross-sectional data have been
instrumental in pointing out the problem associated with heterogeneity within subsets of data and proposed
methods to address this problem.  Subsequent work by Jackson (1991), Beck and Katz (1995a, 1995b),
Bartels (1996), and Western (1997), among many others, have proposed methods to deal with these types
of problems, but, as Bartels (1996) notes, it is commonplace for researchers to ignore problems associated
with disparate observations.
16 Greene (1993), we should note, makes this assertion in terms of his discussion of interaction terms with
dummy variables.  Using our example, separate regression estimates are identical to a pooled model with
interaction terms between the covariates and a dummy variable denoting the country.  And in fact if the
disturbances across the country are equal, then it is most efficient to pool the observations rather than
estimating separate regressions.  Greene’s (1993) point is that if the country-wise disturbance variances
differ across groups (countries), then this dummy variable approach will not be feasible and it becomes
most efficient to disaggregate the data.
17 The “space” and “ time” terminology of course stems from Stimson’s (1985) classic article on pooled
time series analysis.
18 Though this approach is not always feasible.  Inclusion of separate dummy variables for cross-sectional
units, for example, may result in many hundreds of parameters.
19 Or as Hanushek and Jackson (1977) note, “ [t]he use of dummy variables admits to a lack of knowledge
and/or data.  We do not know the underlying cause of the differences in the populations, or we cannot break
out separate elements of this different behavior” (103).
20 Lest we sound too pessimistic about dummy variables approaches, we stress that our argument hinges on
the assumption that the research is interested in making inferences from multiple levels of data., and not
intent on soley alleviating problems of heteroskedasticity or autocorrelation.
21 This aspect sets multilevel models apart from ecological models, in which the dependent variable (and all
other variables) is measured at the aggregate level, for example for level-2 units.
22 Certain software packages like SAS require the reformulation of the multil evel model into a single
equation. Other packages (such as MLN [Goldstein 1995, Woodhouse 1996] and HLM4 [Bryk,
Raudenbush, and Congdon 1996]) require specification of multiple equations.
23 It is possible to extend the multil evel model by allowing for heteroskedastic level-1 disturbances (which
may also be serially correlated – see assumption A.3). We will not discuss this extension in this paper but
for an excellent discussion of the topic the reader is referred to Goldstein (1995).
24 While the multil evel logit model is heteroskedastic, it is distinct from the heteroskedastic logit model
described by Alvarez and Brehm (1996). In the terms of multilevel modeling, the source of
heteroskedasticity in the heteroskedastic logit model is located in the level-1 units; the source of
heteroskedasticity in the multilevel logit model is located in the level-2 units. Steenbergen is presently
working on establishing a heteroskedastic multil evel logit model which combines the logic of the
heteroskedastic logit model and that of multilevel logit analysis.
25 Goldstein (1995) also discusses multil evel models for non-ordered polytomous variables. While in
principle such models could be specified, we have not seen any applications of them, nor are we aware of
software that will handle these models. The reason for this may be quite simple. Even in single-level
analyses, multinomial logit and probit models can cause an enormous expansion of the number of
parameters that needs to be estimated and this expansion will even be more extreme in multil evel
specifications of these models.

26 Although the statistical issues that are involved are much more complicated, we can compare the
problem of FMLE to the one that emerges in estimating the sample variance. The variance MLE is given by
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x xi , which differs from the common variance estimator s
n

x xi
2 21

1
=

−
−∑ ( ) .

The latter estimator takes into consideration that one degree of freedom is lost in estimating the sample
mean that goes into the variance estimation. By making this adjustment, the common variance estimator
eliminates the bias of the MLE (e.g., Hogg and Craig 1978).
27 There is some evidence that RMLE may be badly behaved under certain circumstances. One of our
colleagues noticed that the deviance for RMLE increased as he added more predictors to the model (George
Rabinowitz, personal communication). This may have been a consequence of the size of the problem,
which entailed a large number of predictors, but it may also reflect problems associated with the
minimization of least squares residuals as opposed to the data.
28 A complete proof can be found in Bryk and Raudenbush (1992). It is based on the well-known result that

( )� ' 'ββ ββ εεj j j j j j= +
−

X X X
1

. Substitution into equation [9], gives

( )� ' 'ββ γγ δδ εεj j j j j j j= + +
−

Z X X X
1

. The dispersion matrix for �ββ j  is given by

( )V Vj j j j j[ ] ' 'δδ εε+ 





−
X X X

1

. An evaluation of this matrix gives the dispersion matrix as listed in the

text.
29 Of course, one may not want to include extremely sparse sub-groups (e.g., fewer than 5 cases), as the
information in such sub-groups can often  not be trusted.
30 Empirical Bayes methods have in common that they evaluate Bayes’ rule on the basis of the observed
data (hence the name “empirical Bayes”). Such methods are now finding increasing acceptance in statistics,
as they allow researchers to engage multiple estimators of a parameter in a consistent manner that has
desirable statistical properties. For a discussion of EB methods, the reader is referred to the seminal work of
Lindley and Smith (1972) and to the excellent discussion by Carlin and Louis (1996).
31 We should note, however, that its possible to over-center in multil evel analysis. For instance, Bryk and
Raudenbush (1992) suggest that all predictors should be centered, including dummy variables. In our view,
this is counter-productive. The centering of dummies is not necessary either for the prevention of il l-
conditioning or for the interpretation of results. In fact, we suspect that centered dummies hinder a clear
interpretation of the results, rather than enhance it.
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