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Abstract: Althoughintegrating multiple levds of data into an andysis
can dten yield better inferences abou the phenomenon under study,
traditiond methodologies used to combine multiple levds of data are
problematic. In this paper, we discuss ®veal methoddogies under the rubric
of multilevéd andysis. Multilevd methods, we argue, provide researchers,
particularly researchers using comparative data, substantial leverage in
overcoming the typical problems associated with either ignaring multiple
levds of data, or problems assciated with combining lower-leve and higher-
levd data (including overcoming implicit assumptions of fixed and constant
effeds). The paper discuses sveal variants of the multilevé model and
provides an application of individual-leve support for European integration
using comparative politi cal data from Western Europe.
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INTRODUCTION

Many problems in pditicd science can be studied at multiple levels of analysis and
combining these levels into a single analyticd approach is often very desirable. A
considerable number of theories and hypotheses in pditicad science hinge on the
presumption that “something” observed at one level affeds or is related to “something”
observed at anather level. Y et despite the prevalence of crosslevel or multil evel theories
and hypotheses of pdliticd behavior, pditicd scientists have been slow to adopt
statisticd methods developed for analyzing multil evel data structures.' The goal of this
paper is to describe and ill ustrate these methods for problems of comparative anaysis.
We take avery broad view of “comparative analysis’ in this paper. Any research design
that generates inferences explicitly based oncomparisons aaosspaliticd “units’ suffices
to be comparative analysis. A padliticd unit may be geographicdly defined (i.e. states or
courtries), temporaly defined (i.e. comparisons of eledions across time), or socialy
defined (for example, pditi cd or socia groups, class etc.).

We chocse ommparative analysis as our domain of application kecaise multil evel data
structures are prevalent in this type of reseach. Indeed, some have even made it a
defining charaderistic of comparative research that multiple levels of analysis are
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analyzed simultaneously (e.g. Rokkan 1966 Przeworski and Teune 197Q but see Ragin
1987, 4. The methods we mnsider are known urder a variety of names — multil evel
analysis, hierarchicd models, random coefficients models, and variance componrents
analysis. The common element of all of these methods is that a dependent variable is
analyzed at the lowest level of analysis in which aresearcher isinterested. This variable
is analyzed as afunction d predictors measured at this level of analysis and of predictors
measured at one or more higher levels of anaysis. Moreover, the impact of the
predictors at the lowest level of analysis is alowed to randamly vary over the higher
levels of analysis.

Our strategy in this paper is to first outline the motivation for conducting multil evel
analysis. Second, we discuss ®me statisticd problems inherent with multil evel data
structures and consider why traditional approaches for deding with these kinds of
structures are problematic. Third, we outline the multil evel model and describe how it
helps al eviate some of the problems associated with multil evel data structures. Fourth,
we discuss the statisticd aspects of multilevel anaysis, including a mnsideration o
interpretation, modeling strategies, and software issues. Fifth, we present appli cations of
multil evel techniques. And sixth, we cnclude with a discusson d some cavedas and
pitfall s associated with multil evel methods.

MOTIVATION FOR MULTILEVEL MODELS

The motivation for multil evel modeling lies in the asumption that variation in a
dependent variable is a function d both lower-level and hgher-level fadors.
Furthermore, the relationship between these fadors and the dependent variable is not
asaumed to be fixed o constant across gace or time. Therefore, when examining
individual-level data, variationin behavior (or attitudes, preferences, and so forth) is not
only a function d individual-level attributes, but also extra-individual factors or more
generally, macro-level fadors? From an emnametric point-of-view, this implies
regresson coefficients in micro-level models are nat fixed, bu alowed to vary aaoss
these factors. What “these fadors’ are, or course, is a theoreticd question. In this
sedion, we ansider various theoreticd and practicd motivations for combining multiple
levels of data.

CrossArea Comparative Analysis. We use the term “crossarea” to denote research
designs that comparatively examine multi ple geographical “units.” The unitsin this kind
of design may involve urtries, geographical regions that extend beyond retional
borders, or regions within a single wuntry. Despite the unit of anaysis, a perennia
concern in crossarea mmparative palitica science is the isuue of “contextual variation”
(cf. Ragin 1987 Collier 1993 Agnew 1987, 1996). Unfortunately, what adually
comprises “context” is often ill -defined or generally cast in terms of amorphous “padliti cd
culture” arguments. Furthermore, the issue of actually being able to model “context” has
been haly debated among comparative methods schaars for many years (for example,
Kalleberg 1966 Rokkan 1966, 1971Sartori 1970, 1991 Przeworski and Teune 197Q
Lijphardt 1971 Geetz 1973 Agnew 1987, 198a Ragin 1987 King, Keohane, and
Verba 1994 King 1996,to name afew). The deavages of this debate are too complex to
fully document here; however, one aped of the “contextual problem” has been the
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courtervailing view of the necesdgty and ability of researchers to engage in quantitative
analysis of crossarea data.

Politicd contexts, some have agued, are too complex, too varied, and too
nuanced to be alequately ceptured in econametric models. Instead, “thick description”
(Geertz 1973 or single cae-study approaches are the only vaid means toward
comparative anaysis, at least from this perspedive. Nevertheless that pdliticd contexts
vary, have led some comparativists to adually advocate “large-n” quantitative analyses
(for example, Przeworski and Teune 1970 and more generally, Jackman 1985. The
argument here, roughly put, is that in order to understand the importance of contextual
variation, ore actualy neels variationin contexts. Expressed in this way, the problem of
modeling contextual variationis akin to the “case seledion” problem delineaed generaly
by Achen (1985) and in terms of comparative analysis, by Geddes (1990 and King,
Keohane, and Verba (199).3

But to “select cases’ impliesthere are caesto select. The argument is frequently
made that comparable crossareadata are rarely available for comparative analysis, and
furthermore, the data available ae largely aggregated, courtry-level data (see Collier
1993, for an owerview of these mncerns). So the question becomes, how does one
model “context”® when ore, apparently, has few data paints (and the few available ae
aggregated)? The answer to this question leals to circularity. Because of the inherent
problems with crossareadata (lack of it, incomparability), thick description a single-
case studies are, by many arguments, the only valid modes of analysis. But then (as
noted abowve) contextual variation canna be modeled because there is no context that
varies in single cae studies. Therefore, “large-n” analyses need to be performed to
cgpture this variation. But comparable data arerarely available... . Andso on.

This “data problem” elicits both pradicd and theoreticd problems. Practicdly,
the ladk of extensive aggregate and individual-level data predudes, in some instances,
many quantitative methoddogies.” This is particularly problematic for researchers who
attempt to model crossarea variation in individual-level behavior and simultaneously try
to acourt or “control” for contextual effeds. Indeed, individua-level analyses have
been problematic because of the preponderance of aggregated deta, to the exclusion d
individual-level data. Nevertheless two developments, one methoddogicd, the other
data-related, have made inference-making at the individual-level possble.

First, King's (1997 work on the ecologicd inference problem seems to provide
an avenue for comparative researchers to generate individua-level inferences from
agoregated data. Because there is arelative wedth o aggregate data (when compared to
individual-level data) across courtries and regions, King's lution to the eologicd
inference problem may elicit more atempts to understand variation in individual-level
behavior.® The gproach we take in this paper differs from King's work (athough
aspeds of statisticd estimation are similar) because we presume the existence of both
individual-level andaggregate-level data.

Fortuitously, the second development in crossarea analysis has been the anergence
of individual-level survey data.” Although the Euro-barometer has been aroundfor many
yeas, the World Values Suvey(Basanez, Inglehart, and Moreno 1997 promises to add a
considerably wider range of individual-level data for many global regions. Additionally,
a host of other regiona surveys (seeanalyses of these data in Gibson 1996,Gibson and
Duch 1992,Gibson, Duch, and Tedin 1992 Mishler and Rose 1997,and so on) indicates
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the problem with limited individual-level data is disdpating rapidly.® Recent research
using cross-area individual-level data suggests substantial leverage may be gained in
understanding processes of citizen and €elite opinion dynamics, suppat for democracy,
radal and ethnic tolerance and so forth (see Franklin, Marsh, and McLaren 1994
Franklin and Rudig 1995 Franklin, Van Der Eijk , and Marsh 1995 Gibson and Duch
1992 Gibson, Duch, and Tedin 1992 Gibson and Caldiera 1996 Gibson 1996 Mishler
and Rose 1997for very recent examples of this work).

With the emergence of individual-level data, the theoretical “data problem” then
becwmes one of relating individual-level data to aggregate-level data.  We think the
concerns comparativists have with contextual variation, and more generaly, with the
relationship between maao-level fadors and individual-level factors can be aldressed
with the multil evel techniques we discussin this paper. The agument that contextual
variation precludes systematic quantitative analyses of individual-level behavior in cross
arearesearch, we believe, is now largely vaauows. The growing body of individual-level
and aggregate-level data in comparative pdliti cs permits estimation o models that can
combine data measured at different levels. Problems of heterogeneity, assumptions of
fixed effeds, and most generally, contextual variation, can be accourted for with
multil evel tedhniques.

Podled Time-Series Cross Sections. Comparative padliti cd data are frequently analyzed as
poded time-series crosssedions. Work in the pdliticd methoddogy literature has
extensively considered the special problems that emanate from such deta (c.f. Beck 1983
Stimson 1985% Bed and Katz 1995, 1996, 19961). Recently, Bed and Katz (1996
and Western (1997 have mnsidered estimation d randam coefficients models for poded
time-series cross-sedion designs. Among the statisticd problems that emerge from such
designs iswhat Western (1997 call s “causal heterogeneity.”

For example, if one is interested in the relationship between some set of covariates
and econamic condtions (such as unemployment; see Western 199), unaccourted-for
causal heterogeneity may lead to incorred or imprecise inferences. As he nates, only if
one aames the relationship between covariates and the dependent variable is constant
aqoss courtries does one need not worry abou causal heterogeneity. Unfortunately,
given the pronourced relationship of “contextual fadors’ that vary across courtries
(Przeworski and Teune 1970, it isunlikely that the same forces operating in one courtry
are @nstant acossal courtries (Western 199). In time series anaysis, this siggests
that “fixed” feaures of a courtry (for example, institutional fadors that are largely time-
invariant) may induce heterogeneity because parameters in standard time series are
agnostic to country-specific fadors that induce variable wefficients. This kind d
heterogeneity is therefore left unaccourted-for and relegated to the aror structure. But if
ingtitutions are “nested” within courtries then parameter estimates in the time-series may
vary in accordance with institutional or contextual variation (Western 1997. The models
discussed here and in Western (1997 provide researchers who work with poded time-
series cross-sedions Kme leverage in acourting for this kind d heterogeneity. Thus,
this type of design in comparative pdlitics provides ancther theoreticd motivation for
using multil evel analysis.

In addition to poded crosssection time-series designs for aggregate comparative
data, multil evel methods may prove useful for poded designs with individual-level data.
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For example, “eledion effeds” may be modeled by thinking of individuals as being
nested within campaigns or eledions. National or regional aggregate pdliticd fadors
may produce varying coefficients for individual-level models, if individuals respond @
behave differently to changing national condtions (c.f. Kramer 1983 Haller and Norpoth
1994 or pditicd campaigns (c.f. Kahn and Kenney 1997, Westlye 1994). More
generally, comparative analyses of eledions over time, or comparative anayses of
multiple campaigns within a single national eledion may require eamining data
measured at multiple levels. In ether design, multil evel methods may be gpropriate
todls.

Comparative Institutions and Legislative Behavior. Scholars interested in legislative
behavior frequently deal with data measured at multiple levels. For example, data on
voting records of U.S. House and Senate members is widely avail able and an aburdance
of research suggests these voting records vary, at least to some degree on constituency
characteristics and institutional attributes’ (c.f. Kingdon 1992 Jadkson and King 1989
Box-Steffensmeier, Arnold and Zorn 1997. Analyses of legidative behavior outside the
United States has aso found considerable variation in legislator behavior attributable to
constituency charaderistics (c.f. Ames 1987, 199% And more generally, legislator
behavior acrossa variety of adivities (voting, committee seledion, electoral behavior,
etc.) has been shown to be related to institutional characteristics as well as preferences of
constituencies (c.f. Hibbing 1992 Katz and Sala 1995.

Comparative legidative reseach has focused on,among other things, the extent
to which legislators pursue the “persona vote” (Cain, Fergjohn,and Fiorina 1987 Carey
and Shugart 1995. Carey and Shugart (19%) hypothesize that legislator behavior is
substantially condtional upon nanination processes and electoral laws. Such facets of a
courtry’s electoral system clearly vary across courtries and how this maao-level
variation combines with legislator characteristics suggests that a model combining baoth
the maao- and micro-level datais appropriate.

Contexual Analysis. Contextual analysis of pdliticd behavior is areseach field where
the asumption d aggregated influence onindividual-level opinions and kehavior is most
explicitly made (see Huckfeldt and Sprague 1993). The maor suppasition d contextual
analysis is that the “contextua effect...arises due to socia interaction within an
environment” (Huckfeldt and Sprague 1993, 289. This environment (i.e. the context)
may be spatialy defined, for example, in terms of local neighborhoods (c.f. Huckfeldt
and Sprague 1987 Brown 1981, 1988 or in terms of local “socia networks’ (c.f.
McKuen and Brown 198%. Thus, requisite data for contextua analysis involves
information gathered bah at theindividual level and at the extra-individual level.

Apart from spatial or geographic definitions of context, pditicd scientists have
long regarded pditicd and social groupngs as a source of contextua variation (c.f.
Uhlaner 1989 Lau 199Q Smith 1990. The basic ideahere is that group membership, o
more spedfically, attributes of the group itself, exert influence on an individua’s
opinions, attitudes, preferences, or behaviors. Thus, when treated as a “contextual
effect,” individual-level outcomes are andtioned on nd only individua fadors, bu also
group-level effects!® Andthe social influence of groups need na be @nfined to tangible
affili ations (for example, membership in the National Rifle Association a the Sierra
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Club). Thenation d social identification (c.f. Tajfel 1978) suggests that individuals may
“identify” with many social groupings that are not necessarily well defined or bounced as
is the cae with affiliational groups. For example, individuals may identify with ethnic,
radal, socioecnamic, or classbased groupngs. In this case, the @ntextual “unit” is
very disperse but the ontextua “effed” dtill implies that a maao o group level
“consciousness’ or awarenessinfluences individual-level judgements and behavior.**

So lroadly defined, contextual analysis provides a nwvenient segue for
multil evel modeling."® Contextual theories or hypotheses posit that individual behavior is
some function d both individual-level and extra-individual fadors, and therefore, data &
multiple levels need to be @nsidered jointly. How these multiple levels of data ae
combined has been an ongoing iswue in contextual analysis (c.f. Boyd and Iverson 1979
Iverson 1991 Sprague 1976, 1982 Sitpak and Hendlar 198) and we ague the
theoreticd underpinnings of contextual analysis naturally leads to a @nsideration o
multil evel methods.

To conclude this dion, we have delineaed several theoretical, pradical, and
substantive motivations that provide an avenue toward multilevel modeling. Clearly,
there are more tedchnically oriented reasons why one might consider analyzing multiple
levels of data, and o course, we aldressthese isaues in detail below; however, from an
applied perspective, there are numerous hypatheses and theories in pditi cd science that
leads us to consider combining lower and higher levels of data. In the next sedion, we
discusswhy traditional methods of combining multil evel data ae problematic.

COMBINING MULTIPLE LEVELSOF DATA

Comparative reseach frequently involves combining multiple levels of anaysis,
however, many standard techniques for combining data are inadequate. In this sction,
we onsider the problems asociated with the “separate models’ approadh, the dummy
variables approad, and most generally, the interactive model approac.

Separate Models. One methodto “combine” multiple levels of data in a research design
is to avoid combination, a to eliminate variance in higher-level factors. For example, a
crossarea research design may consider how indviduals nested within a Western
European courtry suppat their courtry’s membership in the European Union. Because
“contextual,” historicd, or other extra-individual fadors may influence in some way,
individual-level attitudes and preferences, these factors are “held constant” by estimating
separate individual-level models for every courtry:

Yip = Bo + ByX +&
Yio =0, A, X &

Yj =W, + WX t+E&

In this case, the parameters refled the relationship between x; and the resporse variable.
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The different Greek characters ill ustrate the spedfic parameters derived from estimation
of separate models for each of thej courtries. Such adesign can avoid combining cross-
level data because wurtry-spedfic fadors (or contextual effeds) are esentialy held
constant becaise only individual-level data nested within the courtry are used to derive
parameter estimates. In this snse, context is implicitly modeled by not being modeled.
Frequently in such designs, “eyeball” comparisons are made across the rows of
coefficients estimated for ead courtry and assessment (often times norstatisticd
asesanent) is made by comparing and contrasting differences in magnitudes of the
coefficient estimates. With resped to understanding how maao-level fadors relate to o
interad with lower-level fadors, howvever, this design is problematic.

Because mntextual fadors that may vary across the j courtries are ignored (a
result of the separate models), it isdifficult to discern the relationship between macro and
micro-level variables. Although coefficient estimates may (or may nat) vary acrossthe
Separate-courtry regressons, typical “eyeball” tests do nd provide sound evidence of
statisticdly significant variation (or ladk thereof). And while statisticd comparisons
aaoss pairs of regressons (for sets of coefficients) are passble using multiple Chow
tests, 2 it is not obvious what the import of these tests are in terms of making inferences
abou spedfic parameters (Bartels 1996.** Eyeball comparisons or Chow test statistics
only provide information abou diff erences across ts of equations, and therefore provide
noinformation onwhy the variation exists in the data acossthej units.

Differences in parameter estimates may be dtributable to unolserved
heterogeneity.’® The source of this heterogeneity may center on contextual facors or
some other type of unolservable fador that exhibits influence on individual-level data.
Ironicdly enough, it is because of this heterogeneity—the unolserved (or unmeasured
contextual fadors)—that some comparativists resort to dsaggregating data by country (or
some other unit) rather than poding observations. Inded if the disturbance variances

aaoss the untries (or more generaly, urits) are unequal, such thatE(o?) # E(ajz),

then an appropriate modeling strategy is to dsaggregate the data and estimate models on
subsamples (c.f. Greene 1993, 236'° but see Bartels 1996, or estimate models that can
acommodate heteroskedastic error structures.

The problem with na poding the data, at least with regard to making multil evel
inferences, is that a cnsiderable anourt of information is lost, wasted, a ignored by
failing to pod the observations. And even more problematic, the influence of contextual
fadors—influence mmmonly hypothesized in comparative reseach—cannot be assessed
through disaggregation. Thus, if the theory suggests a mmbination d multiple levels of
data, then unt-spedfic models fail to cgpture the theory because they are incapable of
discerning the relationship between higher and lower levels of data

Dumny Variables Models. One technique often used to gain some leverage on the
heterogeneity problem discussed above is through the use of dummy variables. Because
data poded across contextual units potentially elicit heterogeneity, dummy variables are
commonly used to “capture” this heterogeneity on the right-hand side of the eguation.
Capturing heterogeneity through dummy variables may invalve inclusion d separate
indicators for the j-1 contextual units:

Y, =By + BX% +B,D, + 3D, +"'+Bij—1 tE,
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where the D terms represent binary indicaors for the j-1 units. The dummy variables
approadh is frequently used with poded time-series data in the form of least squares
dummy variables models (LSDV) to model either “space” or “time’*’ problems (c.f.
Stimson 1985, Sayrs 1989, Hardy 1993 and in comparative analyses to model unit-
spedfic heterogeneity. In this nse, incluson d dummy variables ads as a control, of
sorts, for the “noise” inherent in the poded crosssections, or in the time dynamic. And
to that end, the dummy variables approach is perfectly reasonable and justifiable®
However, if the intent of the model is to derive substantive inferences abou the
relationship between multiple levels of data, then the dummy variables approad is
problematic.

To the extent one is concerned with aggregate-level influence, a dummy variable
indicator for a ontextual unit provides arse information abou macro-micro
relationships. With the use of dummy variables, the reseacher is implicitly arguing that
important differences exist between contextual units, bu can say very little &ou the
medchanisms dliciting these differences because dummy variables do nd represent
anything “substantive.”*° Little insight is gained from examining parameter estimates of
dummy variables, except in nding that some unit-specific influence is at work And
given the bluntness of the information yielded by dummy variables, the inference
problem gets worse & the number of contextual units increases. Podling data generated
aaoss a number of units induces a “proliferation d parameters’ problem. If one is
serious abou modeling unit-specific fadors, then one will necessarily neal to include a
substantial number of parameters in models. As a method d combining multiple levels
of data, then, the dummy variables approac fails. Moreover, even if dummy variables
yielded interesting information abou contextual variation, pedsely how individual-level
data relate to the maao-context ostensibly “measured” through the dummy indicators is
still unacourted for.2°

The Interactive Model. The problems raised in the previous two sedions can be
aleviated somewhat through what we will cdl the “interactive model.” In the linea
modeling context, the interadive model treds the relationship between an independent
variable and aresporse variable & nonadditive and ore that is mediated through one or
more independent variables. With multiple levels of data, we might think the relationship
between individual-level variables and the resporse variable & being mediated by some
extrarindividual variable measured at a higher level. For example, we could pcstulate
that

Y = Bo + BiXy +Bzzij + B3Xy Z,; &,

where z; denotes a unit spedfic or extra-individual (hencethej subscript) variable and 3
denoates an interadion “effect” between the individual-level variable x; and z;;. Droppng
subscripts for now, if one or bath z and x are cntinuows or semi-continuos variables,
then the interadion parameter, s ill ustrates how the bivariate slope between x and y is
mediated by or varies with values of z. That is, x “interads’ with z to produce varying
slopes. Furthermore, if zis an indicaor of a hypothesized contextual fador (for example,
a nation's unemployment rate, type of government, ideologicd climate), then we have,
apparently, modeled the mntextua effed.
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The interactive model, at least when compared to the “separate models’ or
dummy variables approad, is clearly more dtradive in terms of combining multiple
levels of data. Instead of ignoring contextual fadors as is usually dore with separate
regressons and instead of collapsing the ntextual “effect” into the form of a dummy
variable, we have bath acounted for unit-specific contextual variables, poded the data
aaossunits, andlinked the mntextual fador to the individual-level variable. All of this
yields parameter estimates all owing us to consider how individual observations “move’
or vary with contextual variables.

Obvioudly, the interadive model iswell known to pditi cd scientists (in large part
dueto Friedrich’s[1987 article) and has been frequently used to demonstrate contextual
effects, eledion effects, courtry effects, group effeds and the like (c.f. lverson 199).
The problem with the interactive model, however, is the implicit spedfication that the
contextual “effect” is deterministic. To see this, we can retrieve the interadive model
through the following exercise. Suppase we spedfy the following model:

Y, = Bo + By +€,

but believe that the relationship between x;; andy; is mediated by the mntextual variable
z3;. Under such conditions, we can rewrite 3; as

B =Vt Y114
and express 3, as
Bo =Yoo + Y0144

Substituting these expressons into the original model, we obtain

Yi =Yoo t Yoz VioXs TV X T,

which is equivalent to the original interactive model discussed earlier. But because in
this formulation, the interadion d x and z is explicitly specified in terms of a varying
coefficient, it is easy to seethe deterministic nature of the interactive model. The two
expressons for B; and [ are fully deterministic functions of z. This is equivalent to
saying there is no stochastic disturbance aciated with the interadion, and that the slope
and intercepts are determined solely by z.

But suppcse the interadion is not fully determined by z, bu aso is a function o
stochastic eror. Then the expressonsfor 5, and [y can be written as

B =Vt Yuz; t 51]
Bo =Yoo+ Y0144 +6Oj

and substituting these into the interadtive model produces
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Yi = Voot Yoz +VaoXy V112 Xy +0g; +0y%; +E; .

The two & terms represent the stochastic disturbances associated with the slope and
intercept. In this case, bah the slope and intercept have been rewritten as randam
coefficients. The aldition d the two error terms substantially complicaes matters
becaise instead of asingle source of stochastic variance in the interactive model, we now
have two sources. The first source enanates from the lower level data, the second from
the contextual or higher-level data. Typicdly, this ssond source of stochastic variance is
ignored in interadive models thus implicitly treating slopes and intercepts as gochastic
functions of z. Consequently, the traditionally estimated interactive model is problematic
in terms of its ability to combine multiple levels of data. Because the wmplex error
structure that almost surely exists in many applied settings of comparative research is
ignored through the standard interactive model, we turn our attention to multil evel
methods.

To summarize this =dion, we have found that traditional methods used to
combine multiple levels of data breskdown in important ways. While the standard
interadive model ostensibly demonstrates contextual effects, we find it makes very strict
asumptions abou the relationship between slopes and intercepts and the ntextual
variables. More generally, the problem with the traditional methods is that they fail to
cgpture “real” contextual factors (asin the cae of the dummy variables approach), fail to
relate higher-level datato lower-level data (as in the case of the separate models approach
and dummy variables approad), and fail to acoun for macro-level stochastic variation
aqoss contextual units (as in the cae of the standard interadive model, the dummy
variables approacd, and the separate models approach).

THE MULTILEVEL MODEL

In this sction, we derive the basic form of the multilevel model and provide
extensions. This dion relies extensively on the work of Jackson (1991) and espedally
on the pioneaing work of Bryk and Raudenbush (1993, Goldstein (19%), and Longford
(1993. The intelledua roats of the multilevel model extend at least as far badk as
Swamy (1970), with his groundoreaking work onrandam coefficients models.

Basics of Multilevel Models

The simplest multil evel model that can be formulated considers only two levels of
analysis. Thefirst and most elementary of these levels will be referred to aslevel-1 and it
isonthis level that the analysisis focused. The remaining level is referred to as level-2
and provides the context for the level-1 units. For instance, level-1 unts could be voters
who are nested in dfferent courtries (level-2 unts). The dependent variable is measured
for level-1 urits, since this is the primary level of analysis®* We shall dencte the
dependent variable @ yjj, wherei refersto level-1 unts andj refersto level-2 unts. We
assume there ae Jlevel-2 units, each containing n; units.

The objedive of multil evel models is to acwurt for the expeded value of yj. In
the simplest case this is dore via alinea model, athough multilevel models may be
noninealy spedfied. To simply further (again, withou loss of generality) we first

10

www.manaraa.com



consider only a single level-1 predictor, X, in the level-1 model. The basis of the
multil evel mode is

[1] Yi = Bo,‘ +181j X; T &,

so that E[y;]= B,; + B,;%; ,» asuming E[g; ] =0. The model in equation [1] looks very

7
similar to a bivariate regresson model, with ore important exception: the regresson
parameters are subscripted inj. Thisindicaes that, urlike normal regresson analysis, the
effect of level-1 is nat considered fixed bu allowed to vary acrosslevel-2 unts. As we
have agued, such variation is often assumed in comparative research, thus making the
level-1 model attractive.

To model the mntextual variation in regresson parameters it is possble to
formulate alditional equations, this time for the contextual or level-2 unts. One or bath
level-1 regresson parameters congtitute the left-hand side variables in these eguations.
The right-hand side variables consist at a minimum of a @nstant and typicdly aso
include a least one level-2 predictor and a disturbance. Thus, a typicd level-2 model
consists of the foll owing equetions:

[24] Boj' =Yoo T Yo0i1Z +60j
[2b] Blj =YiotVYuZ t 51j .

Here, z; denotes alevel-2 predictor, the parameters y indicate fixed effeds (similar to the

coefficients in the dasdcd linear regresson model), and the parameters & are
disturbances that capture any randam variation in the level-1 parameters that remains
after controlli ng for the level-2 predictor.

The multil evel model is characterized by the mmplete system of equations that is
given in equations [1]-[2b]. However, for the sake of simplicity the model is often
characterized by a single equation by substituting [2a]-[2b] into [1]:%?

Yy = (yoo *tY01Z +6Oj)+(y10 Y17 +51j i TE;
=Yoo T VoiZ; T VioXj T VY1Z) % +50j +51j X; t&;

[3]

The first four terms on the right-hand side of equation [3] indicae the fixed effectsin the
model. Thefirst of these terms gives the intercept or constant, the sesaondthe dfed of the
level-2 predictor, the third the effect of the level-1 predictor, and the fourth the interactive
effect between the level-1 and level-2 predictors (the so-called crosslevel interadion).
The latter term provides insight into howv contexts alter the impad of level-1 predictors.
The last threeterms in equation [3] are randam effects — coll edively they comprise the
disturbance of the multilevel model. Here, &, gives the residua contextual variancein

the level-1 intercept after controlling for z, d,x; gives the residua contextual variance
inthe slope for x;;, and ¢; isthe usual level-1 dsturbance term (capturing omitted level-1

predictors, measurement error in y;j, and any idiosyncratic sources of variationin y; that
can be dtributed to level-1 units). We can conceive of &, and &,;x; as parameter noise
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and d ¢; asleve-1 unt noise. Thus, prediction errors of the multil evel model have two
sources: (1) imperfect modeling of the dependent variable (g;); and (2) imperfed
modeling of the level-1 parameters (J,; and J,; X; ).

Equation [3] looks gmilar to the interadive contextual model that we discussed
ealier. In fact, it shoud nav be dear that the standard interactive model is a spedal case

of the multil evel model in equation [3]: if we set d,; =0 and d,; =0, then equation [3]

reduces to the interadive model. Notice, however, that this smplification depends on a
rather strong assumption, remely that the mntextual variation in intercept and slope can
be perfedly accourted for by z (see @uations [2a]-[2b]). In most cases this assumption
is highly problematic because it assumes a far greater knowledge @ou contextual eff ects
than we typicdly possess Rather than assuming perfed predictability of contextual
parameter variation, we shoud test for this; multil evel modeling all ows one to dothis.

By incorporating parameter noise terms, the multilevel model bypasss the
dubious CLRM assumptions of homoskedasticity and noseria correlation. Indeed, it is
easlly verified that the variance of the multil evel disturbanceterm is not constant and that
the disturbances from level-1 unts within the same level-2 unt are @rrelated. To show

this we can write the multil evel disturbance term as u; =9,; +9,;X; +¢; . Further, we
shall make the foll owing assumptions abou the comporents of this disturbance

Al E[d,;] = E[d,;] = E[¢;]=0

A.2 V[0o;]1 =T V[0,;] =111 V(g ] =0’

A3 Co9d,;,€;] =Co\J,;,¢;] =CoVeg; ,e4]1=0
A4 Co\dy;,0,;] =Ty,

Asamption A.l states that there is no systematic parameter noise or level-1 ndse.
Asaumption A.2 states that parameter noise and level-1 ndse can be dtharacterized by
constant variances.?® Asaumptions A.3 and A.4 indicate that the different comporents of
u; are uncorrelated, with the exception d &, and 0o,;. This means: (1) that there is no

serial correlation ketween level-1 dsturbances;, and (2) that level-1 and level-2
disturbances are uncorrelated. The latter asumption implies that omitted level-1
predictors are not correlated with amitted level-2 predictors.

With these assumptions we can naw derive the variance of u:

Viy, 1= E[(6,, +8,, +¢, f]
[44] = E[502j1+ 2%, E[501511]+ XiizE[ i ]+ E[guz]
= TOO + 2Xij TOl + Xij2T11 + 02'
We see that while the comporents of u; are homoskedastic, ; itself is inherently
heteroskedastic as it is afunction d level-1 predictors. Indeed, oy when no @rameter

noiseis assumed for the level-1 slope, will V[u;] be homoskedastic.
The multilevel disturbances are dso serially correlated for level-1 unts in the
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same ontext. Let u; and u; denote two such disturbances, then:

Cofuy U] = E|(8o; +8,,% +&; kBo; + 1%+, )|
= E[Jozj ]+ X; E[501511 ]+ Xy E[501511 ] + % %6 E 5121]
=Tt (Xij * X )T01 * X XigT11
z0.

[40]

Clealy, when the level-1 parameters are modeled as dochastic functions of level-2
predictors, multil evel disturbances will be crrelated for units in the same ntext. Only
when we asaume perfed predictability of the level-1 parameters can we safely assume
that thereisno serial correlation.

The General Multilevel Model and Sub-Models
We can generdize equations [1]-[3] by including multiple level-1 and level-2 predictors.
Let there be P level-1 predictors, Xy (p =1, ...,P). Then, the level-1 model is given by:

P
[5] Yi = B +ZBpJXpu tE;
p:

Further, assume that there are Q level-2 predictors, z; (q = 1, ..., Q). Then, the level-2
model for the intercept is given by:

Q
[64] .BoJ' :yoo"'ZVOquj +5Oj’
g=1
and the level-2 model for the Slopesis given by:
Q
[Gb] Bpj = ypO + Zypqzqi + 5pj )
q:

Substitution d equations [6a]-[6b] into equation [5] gives the genera linear 2-level
model:

P

[7] Yi =V Zyoqij + ypo pij Z YoaZaXei +00; + ) 0pXy; +E,
p= p= p=
The meaning of the various comporents in this equation is identicd to that in equation

[3].

The general model contains a wide variety of sub-models that are well-known in
paliticd science Table 1 lists these models with the componrents of equation [7] that are
required to derive them. Although all of these models are familiar, we shall spend some
time describing each.
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Table1:
The General Multilevel Model and | ts Sub-Models

Model Components Included
M odel Parameter Level-1 Level-2
Noise Predictors Predictors
General Multil evé Model Yes Yes Yes
Randan Coefficients Model Yes Yes No
Means-as-Outcomes Model Yes No Yes
Randan Effeds ANOVA Yes No No
Interactive Contexua Model No Yes Yes
Fixed Effeds ANOVA No No No

Q) Randan Coefficients Moddl. In the randam coefficients model, which is widely
used in the analysis of poded crosssections and time-series data (e.g., Dielman 1989
Stimson 1989, the level-2 predictors are dropped from equations [6a] and [6b]. Thus, the
level-1 parameters are onceived of as smple functions of a mnstant effed and randam
noise. This conceptuali zation results in the foll owing model:

P P
Yi =Voot ) VooXp T 50j + 5ijpij tE;.
p=: p=:
The level-2 predictors and crosslevel interactions disappea from the general multil evel
model, bu the disturbances remain heteroskedastic and serially correlated.

(2 Means-as-Outcomes Model. In this model no level-1 predictors are included, so
that the level-1 model simply consists of an intercept that is all owed to vary contextualy.
However, the model for this intercept does include level-2 predictors. Consequently the
model is given by:

Q
Yi =Voo t ZVOquj +5Oj tE&,
q:

so that the mean of y; is considered to be the outcome of contextual fadors:

Q
Ely;] :yOO+Zyoqzqj . The disturbances for this mode, u;, =9, +¢;, ae
q=

homoskedastic (V[u;] =1, +07) but serialy correlated (Coju U] =Tg #0).

ij?

3 Randan Effeds ANOVA The means-as-outcomes model can be modified by
droppng the level-2 predictors from the model. This results in the randam effects
ANOVA modd:

Yi =Yoo +60j T &,
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where y,, isthe grand mean of y;;. Randam effects ANOVA is useful when the treament

levels are not considered fixed bu sampled from a “popuation” of treaments (see
Maxwell and Delaney 1989.

(4) Interactive Contexual Model. If the disturbances are removed from the level-2
model equations, the interadive mntextual model that we discussed earlier is obtained.
As noted before, the implicit assumption d this model is that the level-1 disturbances
(which are the only disturbances left) are homoskedastic and nd serially correlated.
These aethe aumptions of clasgcal linea regresson analysis.

) Fixed Effedas ANOVA. Fixed effects ANOVA can be thought of as a modificaion
of randam effects ANOVA. Rather than assuming that the treaments are sampled, they
are thought of as fixed: in ead imaginable iteration d an experiment the same levels
would be dhosen over and over again. This being the cae, parameter noise — which
would arise from treament sampling fluctuations — can be ignored. Consequently, we
obtain the foll owing model:

Yi =Yoo T &
where vy, isthe grand mean of y;;.

Extensions: Higher-Order Multilevel Models
The multil evel model canna just be expanded to incorporate multiple predictors, it can
also be etended across more than two levels of analysis. The basic logic here is a
straightforward extension d the 2-level model: parameters at each level of analysis are
allowed to vary contextually over the next-higher level of analysis, with the parameters at
the highest level of analysis considered as fixed.

We can ill ustrate this logic for a three-level model (for example, of voters nested
in dfferent time periods in dfferent states). Let yjjx denote the dependent variable, with
the alded subscript k referring to the level-3 unts (e.g., states). Then the level-1 model
can be written as:

P
Yik = Bojk + Zﬁpjkxpijk T Ey -
p:

The parameters B are dlowed to vary contextually acrossthe level-2 urits (for example,
they could betime-varying parametersif the level-2 urits are time periods) according to:

Q
Bojk =Yoo T Z Vqu quk + 50jk
q:
Q
Bpjk =Yook T Zyquzqik +5ka .
q:
Finaly, the parameters y are dlowed to vary contextually across the level-3 units.
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Asauming S level-3 predictors, wg, with fixed effeds A , thisimplies the foll owing set of
equations:

s
Yook = Aooo * Z AoosWer Voo

s=1
S

yqu = AOqO + AOqusk +V0qk

S=.

s
Yook = A poo T Z A posWsk TV ok
=)

S
Vo = Apao + D ApgsWa +V -

s=1

The structure that these seven equations produceis highly complex. Among other
things, it contains main effeds for the level-1, level-2, and level-3 predictors, doube
crosslevel interadions, and triple aosslevel interadions. In addition, the 3-level model
contains an excealingly complex disturbance term. Neeadlessto say, extensions of the
multilevel model to an even greater number of levels produce still more mplex
structures.

With recent advances in computational power, most software padkages will now
permit the analysis of at least 3-level models, with some dlowing as many as nine levels
of anaysis (athough cross-level interadions are usually not permitted in this case).
However, we caition against moving beyond 2level models, for two reasons. First, as
the number of levelsincreases ever greaer demands are placed onthe data for estimating
the parameters, in particular the variance comporents. As we will seg in these caes it
becomes criticd that sufficiently large numbers of level-2 and level-3 units are avail able
and in we doult this will be the cae in most pdliticd science data sets. Second, the
interpretation d complex multi-level models is very tricky. It forces us to think abou
contextually determined effeds, in which the ontextual determination is itself
contextually determined, and so on. Perhaps as a genera statement abou the world, a
suppasition d such contingent contingencies is true, but it hardly makes for parsimony
and it may well cause bewilderment rather than insight into the linkages between
different levels of analysis. Thus, ou recommendationis to refrain from using more than
two levels, urless one has a dear rationale for including more levels and strong
expedations abou the nature of the dfeds and their contingencies.

Extensions: Nonlinear Multilevel Models
Another way in which multil evel analysis can be extended is by droppng the linearity
assumption that has characterized ou discusson thus far. Receit developments in
multil evel analysis now permit for norlinea model spedfications and this opens the doar
to modeling discrete resporses, event duration data, and courts.

The simplest multil evel model for discrete resporses is that for binary variables.
The most common model for such variables is the multil evel 1ogit model, which modifies
the linea multilevel model by spedfying a logit link function (Goldstein 1991,1995.
Thus, the outcome of interest is the propation d cases, 1. |, that fall into caegory 1 of

ij
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the binary outcome measure and the multil evel model for this propartion can be written
in terms of the log-odds ratio:

Q P
%H yOO ZyquQJ + Zypo pij Z yquQJXPU +6 + ZJPJXP'J +£

It is conventional in this gedficaion to set V[gij]:a2 =1, asis dore in conventional

logit models. However, the multil evel disturbance term continues to be heteroskedastic
and estimation d the logit parameters is condiwcted assuming such heteroskedasticity gas
oppased to hamoskedasticity, asis the cae with estimating conventional |ogit models).**

Most multil evel software pad<ages require the use of a logit link function in the
analysis of binary data. However, there has been some movement toward the use of the
probit link function. Thus, the program MIXOR (Hedeker and Gibbors 1996 all ows the
user to either choase the logit or probit link function. Future simulation studies are
needed to determine which of these functions behaves best in the context of multil evel
anaysis.

Another development associated with the program MIXOR isto extend multilevel
analysisto ordinal dependent variables. Here the user again has a dhoice between logit or
probit link functions, bah of which are available in MIXOR. The statisticd theory
behind adered multil evel logit and probit models is st out in Hedeker and Gibbors
(1994 also seeGoldstein 1995.%°

Modes for counts are dso estimable in multilevel analysis by spedfying a
multil evel Poisson regresson model (see Goldstein 1991, 199h The outcome of interest

in thismodel isthe expeded number of level-1 urits displaying a particular outcome, ny,
where the superscript a refers to the outcome of interest. This number can be expressed

where ny denotes the number of level-1 urits in the | level-2 urit and i, denotes the

probabili ty of outcome a in the level-1 urits. Most multil evel software pad<age£ proceed
by modeling this probability using a log link function. Thus, the multil evel Poisson
regresson model can be written as.

a
IJ yOO ZyOQZQI +Zyp0 pij Z yquQJXPIJ +5 Z 6PJXDIJ +g :

Typically, the variance of the level-1 disturbance term is st to 1 (which is in keguing
with the aswumption that it follows a Poison dstribution [Golstein 19%]). The
multil evel disturbanceterm, however, is again heteroskedastic (and serially correlated).
From event courts it is posgble to move to event duration models. Goldstein
(1995 provides adiscusson d various forms of the multil evel event history model. The
motivation for multil evel methods as applied to event histories is the ideathat individuals
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or durations may be nested within some higher level unit and therefore, trajedories,
fallure times, and the like, may be influenced by variables measured at the extra
individual-level.  Although use of multilevel event history methods as not been
widespread in the socia sciences, espedally pdlitica science, the methoddogy would
sean very appropriate for many research questions, and particularly amenable to
modeling heterogeneity problems that are rampant in pditicd event history data (see
Box-Steffensmeier and Jones 1997).

STATISTICAL THEORY

In the previous sction we established that multil evel models are @wnceptually
distinctive. They are dso statisticdly distinctive, however, finding their roatsin abody of
statistica theory that is not common to pditicd methoddogy. In this dion we shall
describe this theory, paying attention to the fundamenta principles of estimation and
testing of multil evel models. Sincethisis dill an evolving field in the statisticd lit erature,
we shall discussboth mainstrean and aternative gproaches in the ensuing discusson,
although we shoud nde that only the mainstream approaches are airrently implemented
in standard multil evel software.

Preliminaries

To simplify the discusson d estimation theory, it is convenient to re-expressthe
general multil evel model of equations [5]-[7] in terms of matrices and vedors. To doso,
we olled the resporses of al level-1 urits in the j™ level-2 urit in an; x 1 vedor y;.
Similarly, the resporses on the level-1 predictors are @llected into theny x (P + 1) matrix
Xj, which also includes the level-1 constant, and the level-1 dsturbances are llected in
then; x 1 vedor g;. Finaly, the level-1 coefficients are wlleded inthe (P + 1) x 1 vedor
B;. Thisallows usto expressthe level-1 model as:

[8] yj:Xij+sj'

Furthermore, we mlled all level-2 predictors into the (P + 1) x (Q + 1) matrix Z;,
which includes the level-2 constant, &l | evel-2 disturbancesinto the (P + 1) x 1 vedor §;,
and al level-2 coefficients into the (Q + 1) x 1 vedor y. This gives the following
expresgon for the level-2 mode:

[9] Bj:ij+6j'

Substitution o equation [9] into equation [8] gives the expanded form of the multil evel
model:

[10] vy, =X,Z)y+X)d, +¢,.

To complete the multil evel model we restate assumptions A.1.-A.2..
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g, ~N(0,0°1)
6] - N(O!T) '

where T isthe variance-covariance matrix of the level-2 dsturbances.

Estimation Theory

The most common method for estimating multilevel models is maximum
likelihoodestimation (MLE), whereby the fixed effects, level-1 coefficients, and variance
comporents are estimated simultaneously. However, conceptualy it is easier when we
think of the estimation d the fixed effeds, level-1 coefficients, and variance @mporents
as sparate steps. When we do so, it becomes apparent that the estimation o muiltil evel
models entail s a mixture of generalized least squares (GLS), empiricd Bayes (EB), and
MLE methods.

Variance Comporents. Estimation d the variance @mponents is the most controversial
asped of the estimation theory of multilevel models. Many programs estimate the
variances of the disturbances through Full MLE (FML). This entails minimization d the
deviance of the data, where deviance is defined as —2 times the log-likelihood function
(for details and formulae see Bryk and Raudenbush 1992 De Leeuw and Kreft 1986
Longford 1993. However, other programs utilize amodificaion d MLE that is known
as Restricted MLE (REML; Harville 1977). This method dees not minimize the deviance
of the data but the deviance of the least squares residuals (see Bryk and Raudenbush
1992 DeLeeauw and Liu 1993 Longford 199B).

Many researchers advocae the use of RMLE, espedally in small samples. The
resson is that FML, while consistent and asymptoticdly efficient, does not adjust for the
number of fixed effeds that are estimated and hence tends to be biased. REML makes
this adjustment and is hence, at least theoreticaly, the better of the two estimators.?® This
superiority shoud be evident, in particular, with small samples of level-2 unts. The FML

variance componrents will tend to be underestimated by a fador @ compared to
the REML variance comporents. For small samples of level-2 unts (J is snall), this
reduction can be substantial. However, in large samples of level-2 unts the reduction is
generaly uninteresting (seeCresde and Lahiri 1993.

Whether the differences between FML and REML are truly as dramatic in
pradicd applicaions of multil evel modeling as the advocates of REML have sometimes
suggested remains to be seen. Smulated comparisons of the two methods have not
generated a dea picture of the drcumstances under which ore or the other method is
preferred (Swallow and Monahan 1984. Evidence that we have seen (e.g., Kreft, De
Leeuw, and Van Der Leeden 199) fails to show dramatic differences in the FML and
REML variance mmporents, bu this may be peauliar to the data that were used. Given
the mnsiderable unclarity abou the status of FML and REML,?” we suggest that users
will try to use both and compare results. Alternatively, an entirely different approach to
estimation could be taken, atopic that we shall addressbelow.
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Fixed Effeds. Estimation d the fixed effects vedor y can be based onequation [9]. One
approach would be to employ ordinary least squares (OLS), so that:

-1
y:(Zj'Zj) Z'By.
Of course, Bj isunknown, but it can be estimated from equation [8] using OLS:
A -1
B, :(XJ Xj) X'y

This is the gproach of traditional contextual analysis (Boyd and lversen 1979 also see
Hanushek 1974. An important drawbadk of this approad is, however, that it does not

take into acourt that ﬁj is usualy estimated with dfferent levels of precision in
different groups, if only because the sample sizes in the different groups differ. As a
consequence, Y is nat BLUE (best linear unbiased), except in the speda case of a
balanced design in which the sample sizesfor all level-2 unitsare identicd.

A better approad is to use apredsionweighted estimator that gives greaest
weight to those estimates of f; that are the most predse. This can be dore via
generali zed least squares:

v=(z/872)) 2 278,

where A is the weight matrix. The only problem is now to define A, . Since we want to
predsionweight the estimates of f;, it makes enseto base A; onthe dispersion matrix of

A

B,. Itiseasily demonstrated that this dispersion matrix takes the form
-1
A =T+V, :T+oz(xj'xj) :

where T is the variance-covariance matrix for & and V; is the normal OLS dispersion
matrix.”® We can think of A, as consisting of two parts. Thefirst part, T, gives parameter

dispersion: randam variance in the parameters. The second art, V;, gives the variance of

the level-1 nase. This can be thought of as error dispersion, as it refleds the true lad of
fit of the model (seeBryk and Raudenbush 1992. In pradice A, isof course estimated,

using the FML or REML variance @mponrent estimates.
The GLS estimator has sveral desirable properties. Firgt, it is unique and BLUE.
Seond, the estimator is resporsive to the data. When a sub-group sample is gnal, for

example, the estimate of ¢ tends to increase because the degrees of freedom are
smaller. Consequently, the data from the sub-group will not be weighted as much in
determining the estimate of the fixed effed. Finaly, although they will receive less
weight, even sparse samples can contribute to the estimation d y . Thus, noinformation

needs to be thrown away. Moreover, since the estimation d y is based oninformation
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from all sub-groups, it does not matter very much if the sub-groups are small as long as
the total sample sizeislarge enough.”®

Levd-1 Coefficients. The estimation d the variance comporents and fixed effects is
sufficient for evaluating the complete multil evel model of equation [10]. However, often
it is important to also oltain estimates for level-1 coefficients for spedfic sub-groups.
Indeed, such estimates are invaluable for the interpretation d multilevel models (see
below) and shoud be obtained routinely as part of the output from multil evel software.
From a statistica perspedive, two dfferent estimators of the level-1 coefficients
are available. First, one could simply consider the data of the sub-group d interest and
obtain OLS estimates based on ory those data. This approach focuses on the level-1
units in a particular sub-group and uwses equation [8] for that group. The resulting

estimates are wlleded in ﬁj.

Alternatively, it is posgble to use equation [9] to dbtain estimates of the level-1
coefficients for a sub-group. This approach focuses on the level-2 unts and uili zes the
principle that E[B,] =B, =E[Z,y+8,]=Z,y, so that B, =Z,y. Thus, by taking the
estimates of the fixed effect and the sub-group information for the level-2 predictorsit is
possble to construct estimates of the level-1 coefficients.

Under the usua assumption d corredly spedfied (level-1 and level-2) models,
the two alternative estimators for the level-1 coefficients are both unbased. However,
they are generally not equally precise. This yields a useful criterion for combining the
two estimators. we can take their weighted average, where the weight attached to an
estimator is determined by its predsion. The resulting estimator is an empirical Bayes
(EB) estimator that, as we shall, see has ®veral attradive properties®

The weights used to oltain the EB estimates are given by:

A =T(T+V)?,

which istheratio of parameter dispersion ower total dispersion (parameter dispersion dus
error dispersion). Using these weights the EB estimator for the level-1 coefficientsis:

B =AM +(1-A)B..

When the eror dispersionis zero, A; =1, and EJ = ﬁj. When the parameter dispersion

is0, A; =0, and EJ = ﬁj. In other cases, ﬁj shrinks to the most predse estimator, hence

the dternative term of shrinkage estimationto denote EB.

EB estimation d the level-1 coefficients has several desirable properties. First, it
can be demonstrated that the EB estimator produces a smaller mean-squared error than
other estimators (Carlin and Louis 1996 Lindley and Smith 1973. Sewnd, the EB
estimator allows reliable estimation d level-1 coefficients even in sub-groups that are
very sparsely popuated. This is becaise the estimator considers y which, as we have

sed, is based oninformation from all sub-groups. Thus, ather sub-groups can help in the
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estimation d level-1 coefficients for sparsely popuated sub-groups. This is often
particularly desirable in comparative research, because problems of micronumerosity are
commonin thisfield (Western 1997 Western and Jadkman 19995.

Estimation in Practice Although severa attempts at noniterative estimation have been
made (De Leeauw and Kreft 1986, most multilevel programs utilize an iterative
procedure whereby the variance mmponents and fixed effects are @ntinuowsly and
simultaneously updated urtil convergence takes place A variety of algorithms are in use,
including EM (implemented in HLM), iterative generali zed least squares (implemented in
ML3), and Fisher scoring (implemented in VARCL). Of these dgorithms, EM tends to be
the slowest and also is least likely to reveal problems when the model is off (see De
Leeuw and Kreft 1995 Kreft, De Leeuw and Van Der Leeden 1991).

Alternative Estimators. While GLS and EB are ceitra to al currently available
multil evel programs, these estimators have dways had their detradors. The genera
criticism is that both estimators criticdly depend on estimates of the variance and
covariance mmponents of the model, bu neither one ad&nowledges that there may be
uncertainty over these components (Bryk and Raudenbush 1993). Put differently, the
FML and REML (co)variance @mporent estimates are incorporated into GLS and EB as
point estimates with a prior probability of one dtached to them. But the spedfication d
such a prior seems overly optimistic, in particular when the number of level-2 urits is
small. After al, in these cases conventional statisticd theory indicaes that estimators
may not be very stable and that a dightly different sasmple could have produced rather
diff erent estimates.

To incorporate uncertainty over (co)variance mmporents, three gproadces have
been proposed. The first, isto simply adjust the GLS and EB estimators by incorporating
estimates of the sampling variance of the (co)variance componrents (Morris 1983 Kackar
and Harville 1984, posshly via boastrapping (Laird and Louis 1987). To dete, this
approacdh has only been implemented for very simple multilevel models and there is
considerable doult that its implementation in more complex cases is draightforward
(Seltzer, Wong and Bryk 1996.

The seand approach is to use afully Bayesian anaysis in which priors are
defined ower al parameters, including the (co)variance comporents. However, this
approad is very demanding and hes been implemented ony for simple models (Rubin
1981). Moreover, the use of a fully Bayesian approach introduces its own urcertainties.
What prior distribution shoud be spedfied, for example, for the variance mmponents?
Our theories of contextually determined behavior may be too limited to provide much
guidanceto questions like this, making the use of the fully Bayesian approad dfficult —
more afuture prospect, than a viable research strategy at the present.

The third approach is to use data aigmentationin a Bayesian approach, i.e., to use
a Gibbs sampler. In this approach, which belongs to the set of Markov Chain Monte
Carlo algorithms, the joint prior distribution ovwer the parametersis sibdvided so that it is
paossble the sample condtionally from the posterior of one parameter, taking the other
parameters as given. Repeated sampling gves the desired information to make inferences
(seeGoldstein 1995.

Applications of the Gibbs sampler in multiievel analysis have been qute
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succesdul, athough computationally demanding (Seltzer, Wong and Bryk 1996 Zeger
and Karim 1991). We believe that this approach hdds grea promise in the future for
multilevel modeling in general, and applicaions in pditicd science spedficdly.
Multil evel data structures in pditicd science often contain few level-2 unts, making
uncertainty over (co)variance mmporents a legitimate issue. However, at present we do
not envision wide scde use of the Gibbs smpler in pradical applicaions of multil evel
models, since arrently no software exists to implement the procedure and since it has
some problems itself, such as the difficulties involved in assessng conversion. For this
reason nore of the goplicaionsin this paper are based onthe Gibbs sampler.

Hypothesis Testing

An important part of multil evel modeling involves testing parameters and models
to seewhich parts of the multil evel model are statisticdly important. Hypothesis tests for
multil evel models are readily available, although there is ome disagreament over the
appropriate test statistics.

Testing Models. The use of multil evel analysis will almost surely involve the assesanent
of different models. Presently thereis no method d assessng the fit of amodel by itself —
the way there is, for example, in covariance structure analysis. At best there ae
diagnastics, most importantly the deviance and related statistics sich as Akaike's
Information Criterion and Schwarz's Bayesian Information Criterion. For al of these
diagnastics the general rule of thumb is that smaller values are better, although ore can
never be sure how small i s goodenough.

A test is avail able when one model is pitted against another model. To doso we
asume that the smaller of these models is nested within the larger model. Let D; denate
the deviance for the smaller model and D, the deviance of the larger model, and let m
denote the difference in the number of estimated parameters (fixed effeds and
(co)variance mmporents). Then,

Dl_D2~Xr2n’

where x2, denotes the X -distribution with m degrees of freedom.

To implement this test procedure, it is useful to settle on a baseline model for
comparison. In many contexts, a useful baseline would be afixed effeds model that only
contains level-1 predictors. From there on ane can move to a randam coefficients model
to assess whether there is sgnificant parameter dispersion. If this is the cae, the third
model that can be fitted is one that includes level-2 predictors of the intercept and/or
level-2 predictors for slopes. An applicaion d this model testing sequence can be found
in the lllustrations edion d this paper.

Testing Individud Variance Comporents. Tests of individua variance @mporents
typicdly involve the null hypothesis Ho: tpp = 0, where T, denotes a particular diagonal
element in the matrix T. There ae d least three different recommendations for
performing atest of this hypothesis. First, Goldstein (199%) suggests the use of the model
comparison test. Here two models are estimated, ore including the (co)variance

23

www.manaraa.com



comporent and the other omitting it, and the difference in deviances is referred to a x*-

distribution. The advantage of this test procedure is that it can be realily extended to a
joint test of multiple (co)variance comporents.

A seoond approadh is to take the ratio of the sguare roaot of the variance
comporent and its estimated standard error and refer this to a student’ s t-distribution with
J—Q — 1 cegrees of freedom (see Longford 1993. This approach works well when a
(co)variance comporent is large but is susped when it is close to 0, in which case the
symmetry of the student’s t-distribution is usually inappropriate (Bryk and Raudenbush
1992.

The third approach is to oltain a x*-distributed test statistic for a (co)variance

comporent. This can be done by taking the sum of squared residuals for a particular
level-2 model and dviding this by the estimate variance of the variance @mporent

involved in this model. The resulting test statistic follows a x> -distributionwith J—Q — 1

degrees of freedom. This approach works well even when variance comporents are dose
to Oand hes the advantage over the model comparison approacd that it is not necessary to
estimate multiple models. However, this approach is not available in al software
padkages, with many relying on the student’ st-distribution instea.

Testing Individud Fixed Effeds. The model comparison approacd can aso be used to test
the significance of individua fixed effeds, bu this is conventionally not done. The
typicd approach is akin to tests of fixed effectsin classcd linear regresson and involves
evaluating the test statistic:

~

qu
VIVl

for the null hypathesis Ho:ypq = 0. Thistest statistic is referred to a student’ s t-distribution
with J—Q — 1 degrees of freedom.

Other Tests. It is also passble to perform significance tests on level-1 coefficients in
particular sub-groups. We shall nat discuss sich tests (see Bryk and Raudenbush 19929
becaise we would like to dscourage them. First, given that level-1 coefficients would be
tested in many sub-groups, ore shoud be very careful in interpreting significance levels.
Indeed, with so many tests Bonferroni adjustments would amost surely be necessary.
More serious, however, is the fad that the tests (even with Bonferroni adjustments) will
betooliberal, uriessthere are many level-2 unts (Bryk and Raudenbush 1993.

We believe that significance tests of level-1 parameters are often used as an
interpretative device to determine in which sub-groups an effect “matters.” However, if
this is the objedive, then much better methods are available. One of these is to simply
graph the regresson lines for different sub-groups and eyeball the results. This gives
insight in the substantive significance of level-1 predictors in particular sub-groups,
which is any way a better criterion for asessng if an effed “matters’ than statisticd
significance
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M easures of Fit

Often reseachers want to knov how much variance they have explained. In regresson
anaysis this question is typically answered by referring to the mefficient of
determination. It is possble to dothe same in multil evel analysis, although in this case
not one but multi ple wefficients of determinationwill be obtained.

A coefficient of determination can first be defined for the level-1 model. Here the
objedive is to assss the ratio o error variance over total variance Longford (1993)
suggests the foll owing R®-measure for this purpose:

65
2
0

R2=1-

where G2 isthe least squares estimate of the residual level-1 variance for amodel with P

level-1 predictors and G2 isthe least squares estimate of the residual level-1 variance for
amodel withou any level-1 predictors. If the level-1 predictors can perfectly aacourt for
the dependent variable, 62 =0, and R? =1. If the level-1 predictors add nahing to the
explanation d the dependent variable, then 62 =62, and RZ = 0.

A coefficient of determination can aso be computed for each level-2 model. Here
the relevant comparison is between the parameter variance etimate for a randam

coefficients model and the parameter variance estimate for a model that contains level-2
predictors. Bryk and Raudenbush (1992 suggest the foll owing R*-measure:

. _ T5(RCM) -1, (SIOM)
2P 1,,(RCM) ’

where 7 (RCM) denotes the estimated parameter variance for the randam
coefficient model (RCM), T, (SIOM) denates the estimated parameter variance for the

slope or intercept as outcome model, and R§p denates the wefficient determination for

the level-2 model for the p™ level-1 coefficient.

As aways, extreme care shoud be taken in the interpretation d the coefficient of
determination, especially since the wefficients discussed here ae unadjusted. We think
of these wefficients as crude diagnostics of model performance However, to truly assess
the comparative fit of different models, it is best to rely on the test that we outlined
edalier.

Model Specification

We want to conclude our discusson d the statisticd theory of multil evel models
by considering the issue of model specification. The analysis of multilevel models
necesgtates model specificaion choices that reseachers do nd ordinarily have to make,
and it is important to pant out the issles that are involved. A first isue @ncerns
centering of the predictor variables, while asecond issie oncerns gecificaion d the
(co)variance mmporents.
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Centering d Predictors. In most statisticd models predictors are included “asis,” i.e., as
they appear in the raw data. However, in multil evel models this often causes problems.
There ae two reasons for this. First, the use of raw data often causes ill -condtioning,
espedally in models with crosslevel interactions (seeAiken and West 1991). Seoond, the
interpretation o multil evel results often suffers when predictors are incorporated in raw
form. For instance, the level-1 intercept canna be eaily interpreted when a zero scoreis
not afeasible outcome in the sample for any of the level-1 predictors. A similar argument
can be made for the level-2 intercept.

Centering, then, is criticd to multil evel modeling.*! Indedd, it is © central that
several software padkages (e.g., VARCL) automatically center the data before estimation.
In ather cases it is |€eft to the researcher to center the data. In this case there ae generally
two strategies (other than na centering) for centering the level-1 predictors: centering
with resped to the grand mean, or centering with respect to sub-group means. For the
level-2 predictors there ae only two choices: nat centering or centering aroundthe grand
mean.

In arecent review of the topic, Kreft, De Leeuw and Aiken (19%) conclude that
the question d how to center is primarily a theoreticd one, for statisticadly spedking
different centering methods tend to yield equivalent results. The central question is what
theoreticd interpretation ore wants to give to the level-1 and level-2 intercepts. In the
absence of centering, the level-1 intercept is the expeded value of the dependent variable
when al level-1 predictors are 0. Moreover, the level-2 intercepts give the expeded
values of the level-1 intercepts and slopes when al level-2 predictors are 0. For these
interpretations to have any validity, the zero-scores on level-1 and level-2 predictors
shoud occur in the sample. When the level-1 and level-2 predictors are centered around
the grand mean, the level-1 intercept gives the expeded value of the dependent variable
for level-1 unts whose score on the level-1 predictors is the arerage acrossall |evel-2
predictors. In this case, the level-2 intercepts give the expeded values of the level-1
intercepts and slopes for cases whaose level-2 predictor score is the average. Findly, if the
level-1 predictors are cantered aroundthe group mean, then the level-1 intercept gives the
expeded value of the dependent variable assuming that a level-1 unt’s <ores on the
predictors are the average in a particular group.

One way to conceptuali ze the different centering methods is to consider what they
cdl attentionto. Adopting the natural metric of the level-1 and level-2 predictors (without
centering) cdls attention to a zero-score on those predictors — this score stands out. This
makes perfed sense, for example, when the O-score refers to a control group to which we
want to make cmparisons. Centering aroundthe grand mean call s attention to the typicd
values for the level-1 predictors, regardlessof where these values occur in terms of level-
2 unts. This type of centering is often useful when the primary interest is in the level-1
units and ore wishes to assess the impad of level-1 predictors against some baseline
value of the predictor for those units. Finally, centering aroundthe sub-groupmeans cdls
attention to context. The primary interest is now in the typical value of level-1 predictors
within spedfic contexts and effeds of these predictors are assessed against this baseline.
This drategy may be particularly useful if there is a grea ded of between sub-group
variance in the level-1 predictor means, so that it makes snse to adopt diff erent reference
points for effectsin dfferent sub-groups. On the other hand, the small er the between sub-
group variance in level-1 predictor means is, the less relevant the dioice between
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centering aroundthe grand mean and centering aroundthe sub-group means becomes.

Minimum Spedfications of (Co)Variance Comporents. Spedficdion d the dements of
the matrix of variance and covariance comporents doud be driven primarily by
theoreticd considerations. Every estimated variance omporent in this matrix implies
that one asumes mMe stochastic variation in a level-1 coefficient, and every estimated
covariance mmponent implies that one assumes that stochastic fluctuation in ore level-1
coefficient are systematicdly related to stochastic fluctuations in ancther level-1
coefficient.

In general, social scientists have generally stronger theoreticd reasons to specify
variance @mporents than covariance omporents. In practice this implies that
researchers often do na include dl possble mvariance @mporents, since some may not
be theoretically meaningful or interpretable. We see no poblems with this pradice,
which can cut down considerably on computation time, except under three drcumstances.

Firgt, it is recommended that a @variance between the level-1 slopes and
intercepts is always included. Thisisimportant because it typicdly is the case that level-2
units with distinctive values on the intercept also show distinctive values on the slope.
Semnd, for obvious reasons, covariance cmporents soud be specified for dummy
predictors that capture cdegories in the same underlying categoricd variable. Finaly,
when ore level-1 predictor is derived from one or severa other predictors, it is advisable
to spedfy covariance componrents between their slopes. This is most relevant in cases in
poynomial type models or models containing interactions between level-1 predictors.

APPLICATIONS

The ldeological Basis of Support for European Integration

Background. Studies of suppat for European integration typicdly come in two
forms. The first consists of aggregate level data and focuses mostly on crossnationd
variations and time trends in the average level of support (Eichenberg and Dalton 1993.
The semnd consists of individual level data and focuses on fadors that may lead
individual citizens to suppat or oppae the EU (Deflem and Pampel 1996, Janssen
199)). Studies that combine the different types of data ae few and far between, and when
they have been conducted the primary focus in the individual level data has been mostly
on ohedive demographic factors (Gabel and Pamer 19%). There may be asmple
reason for this: subjedive individual-level factors have been naoriously poa predictors
of EU suppat, exerting miniscule dfeds, and any attempt at including them in an
anaysis seem doamed from the outset.

The analysis of the role of pdlitica ideology (left-right self-placement) provides a
case in pant. Wes=ls (1995 concludes, for example, that the dfed of ideology on EU
suppat is very weak. While, Deflem and Pampel (199%) do nd draw this conclusion
themselves, the ideology effed that they report is among the wedest in their analysis.

The question is why ideology plays sich asmall role in determining EU suppart.
One muld conclude that the issue of European integration is smply nat ideologicd in
nature. This may well be true, bu before accepting this conclusion we shoud examine &
least one dternative explanation, remely contextual variationin the impad of ideology. It
is posgble that ideology plays an important role in some curtries but not others and that
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sometimes it exerts a positive dfed and in aher cases a negative dfed. This is
consistent with the existing evidence (Wessls 1995 and aso rings true from casual
observation d how pdliticd parties from the left and right have positioned themselves on
the EU isae. For example, in the ealy 1990Gs ideological differences over EU support
between parties in Greeae were non-existing, so that we would exped no effect from left-
right self-placement on EU suppat. In the same period, ideological differences over
European integration in Denmark and Britain were profound. However, in Denmark the
right favored integration, whereas in Britain it was the left (Labou). Thus we would
exped oppaite dfects for left-right self-placement in bah courtries. When these
contextual differences are ignored, as is 9 typically done in comparative studies of EU
suppat, it shoud na come a a surprise that the overall effect of ideology is © small —
the inconsistent eff ects of individual courtries sSmply cancel each ather out.

Multil evel models allow us to test this scond pasbility by testing whether the
variance cmporent that is associated with ideology is gatisticdly significant. If it is, this
is evidence for contextual variation. In this case, we may explore counry-level fadors
that can acoourt for the contextual variation. This allows one to determine whether the
contextual variation is randam or systematic, i.e., predictable on the basis of systematic
differences between courtries. This layered approad, whereby we cnsider ever more
comprehensive models, will beill ustrated in this example.

Models. We mnsider a simple model of EU suppat that is patterned after the work of
Deflem and Pampel (1996. The dependent variable here is a dichotomous measure of EU
suppat that is based on the following question in Eurobarometer 42.0 “Generally
spedking, do you think that (your courtry’s) membership of the European Union is a
good thing, a bad thing, or neither good na bad?” We ded the resporse “good thing’
as 1 and the remaining resporses as 0.

As predictors of this EU suppat measure we include age, gender, educdion,
subjedive dass and ideology as predictors. The basic model allowing for contextual
variation, then, is:

TT.
In%ﬁ%z Bo; + By Age+ B,,Gender+ 3, Education+ 3, Class+ f3;; Ideolog y +
i

&
where the subscript j denotes a particular courtry andthe varianceof g; isfixed at 1.

We onsider threespedal cases of this model. In the first one dl contextual variation
isremoved, so that in ou notation d the multil evel model

BOj :y00’B1j :ylo’BZj :y20’B3j :y30’B4j :y40’B5j =Vs0 -
This produces the astandard logit model. In ou second model specificaion, al effeds

are mnsidered fixed except for the intercept and the wefficient for ideology. For these
two eff ects we stipulate the foll owing equations:
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.BOj =Yoo +60j
.st =Vso +55j

Thisresultsin a (partially) randam coefficients model.

The final model we wnsider introduces courtry-level predictors for By and (4. We
consider three such predictors. First, we exped EU suppat among citizens to be greder
in courtries in which pditi cd parties are generally favorably disposed toward European
integration. This foll ows an elite-driven model of pullic opinion (Wessls 1995. Second,
we exped that EU suppat islessin courtries in which the issue of European integration
is highly salient among pdliti cd parties, because this increase has typicadly been creded
in a dimate of deep internal divisions over integration. One dimension d such dvisions
Is ideology, so that we exped the dfed of ideology to be stronger in courtries in which
the EU issue was slient. Findly, the differencein EU suppat between parties of the left
and right may matter for average levels of EU support becaise it is one indicaor of
internal division. Moreover, this predictor shoud interad significantly with ideologicd
self-placement. Speaficaly, in courtries in which the left and right canna be clearly
distinguished in terms of EU suppat, we shoud exped no effed of ideological self-
placement; in courtries in which the left is clearly more pro-EU than the right, we shoud
exped citizens from the left to be more suppative than thase from the right; and in
courtriesin which the right is most pro-EU, we shoud seethe reversed pattern. Thus, our
third model includes the following level-2 equations:

Boj = Yoo + Yo PartySuppat +y,Salience+y ;L eft — Right Difference + 5,
Bs; = Yso + YspSalience+ y g, Left — Right Difference + &

Data andMeasures. The data wncerning level-1 (individual-level )predictors come from
Eurobarometer 42.0.Age is measured in years, education as the age & which the highest
level of educationwas completed, gender is coded Ofor women and 1for men, subjective
classconsists of five categories ranging from working classto upger class and ideology
is measured ona 10-point scde where 1 indicates the extreme left and 10the extreme
right.

The level-2 (courtry) data were @lleded by Ray (1997). Using an expert survey,
Ray coded the suppat level for European integration as well as the salience of thisisue
for all parties in a cournry. The “Party Suppat” measure that we use is the average
suppat of al parties weighted by their electora representation. Salience is smilarly
defined. Finally, “Left-Right Difference” is a 3-category measure where —1 indicaes that
the left is clealy more favorable toward European integration than the right, O indicaes
that there are no clear differences between the left and right, and lindicates that the right
Is clealy more favorable toward integration than the | eft.

We mnsider data for 9540citi zens from 11 courtries: Belgium, Denmark, France,
Germany, Greece, Ireland, Italy, the Netherlands, Portugal, Spain, and the U.K. Whil e the
number of level-2 unts is not very large, we shall seethat it is gill possble to run a
multil evel analysis and oliain interesting results from it.
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Table2:
Different Models of Support for European Integration ?

Model 1 Model 2 Model 3

Effect Estimate est. s.e Estimate est. s.e estimate Est. s.e
Levd-1 Main Effeds:
Constant -.951* 175 -1.204 b 8.948 b
Age -.003 .001 -.001 .001 -.002 .001
Gender 232 .044 225 .044 233 .045
Educaion .055¢ .009 072 .009 073 .009
Class 215 .022 .186* .023 193 .023
|deology .024 .011 .015 .047 -.892* .338
Levd-2 Main Effeds:
Party Suppart -.387 .369
Salience -2.560 .649
Left-Right Difference -11.033 28271
Cross-Leve Interactions:
Ideology x Salience 2971* .108
Ideology x L-R Diff. .080 .050
Variance Componrents:
Constant 271 113 152+ .086
Ideology 023 034 013 .027
Deviance 12096.243 11473.015 11430.742

Notes: * Model 1-estimates were obtained in STATA using MLE; Model-2 and Model-3
estimates were obtained in VARCL using FML; ° VARCL does not compute estimated standard
errors for the constant; © estimated standard error is for the square root of the variance comporent.
*p<.05

Results. Table 2 gives the VARCL results for the three different models of EU suppat
that we described. We shall first consider the relative fit of these models and will then
comment on the parameter estimates. In terms of relative fit, Modd 1 performs
significantly worse than Model 2: The difference in deviance for these two models is
623.228,which at 3 degrees of freedom resultsin p = .000. Obviously, the poa fit of
Modd 1 relative to Model 2 isduein large part to the cnstraint that the constant is the
same arossall courtries. However, this does nat tell the entire story. When we cmompare
Model 2 to a modified verson d Model 1 with a randam constant, we still observe a
significant improvement in the fit of Model 2 (differencein deviance =134.286, dgrees
of freedom = 2, p = .000). On the other hand, Model 2 clealy fits the data worse than
Modd 3: The difference in deviance is 42.273,which at 5 degrees of freedom givesp =
.000.

The variance @mporent for the ideology effed in Model 2 is not very large
(.023, bu clearly discernable from 0. We can use this variance @mporent to oltain the
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EB estimates of the ideology coefficients in dfferent courtries. These wefficients are
depicted in the bar-chart in Figure 1. Thisfigure lends suppat for our expedation that the
impad of ideology on EU suppat runs the gamut from fairly large negative to fairly
large positive dfeds. Fairly large negative dfeds are observed in the Netherlands and
the U.K., wheress fairly large paositive dfeds are found for Denmark and Greece The
latter two courtries are dso cases in which the salience of European integration to the
national parties was high. Moreover, in Denmark the rightist parties were dearly more
favorably disposed to European integration then the leftist parties, so that we shoud
exped a positive dfect for ideology. In the U.K. by contrast, where European integration
was not very salient, it was the left that suppated integration to a greater extent than the
right, so that we shoud exped the negative ideology effect that we obtain. Thus, salience
and left-right party differences san to accourt for the patterns that we observe in Figure
1. The only anomaly here is the Netherlands, were we find right-leaning citizens to be
less sippative than left-leaning citizens, even if the differences between parties go in the
oppdasite diredion. Moreover, salience of the EU isaue was the lowest in this courtry, so
that we would theoretically not exped any effed from ideology. We exped, then, that the
EB estimates for Model 3 will continue to show the Netherlands as an anomalous case.

Figurel:

Empirical Bayes (EB) Estimates of the Effect of I deology in Different Nations
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The estimates for Model 3 indicae that salience is the aitical courtry-level
predictor of EU suppat. Not only does it exert a significant (and as expeded, negative)
main-effed on the average suppat-level in a ourtry, bu it aso interacts sgnificantly
with ideology. The nature of this interadion is such, that ideology indeed oltains a
stronger effed the more salient the EU issle is. Moreover the dfed changes from
negative in low salience mndtions to pasitive in high salience @nditions, reflecting the
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relative positions of Denmark and the U.K. None of the other level-2 predictors and
crosslevel interadionsis gatisticaly significant.

One question we shoud ask is whether the inclusion d salience (and the other
level-2 predictors) is sufficient to eliminate the randam variation in the constant and
ideology effects. Inspedion d the variance @mporents indicates that thisis nat the case.
While the variance omporents for these dfeds are @dou cut in haf, they remain
statisticdly significant. This may be a indication that Model 3 is under-specified,
including too few level-2 predictors to acoourt for the variation in constant and ideology
effects. Because of the residual parameter variance for ideology, the EB estimate for
anomalous case of the Netherlands remains szable (-.155), as was expeded.

Another question is what would happen if we were to ignore the residual randam
variation after the inclusion d the level-2 predictors and the crosslevel interadions. Put
differently, what problems would emerge if a @ntextual model were run that has the
standard logit error term. On the whale, it turns out that the parameter estimates of a
standard logit model are fairly close to those reported in Table 2 for Model 3. However,
there is one magjor exception to this. In an ardinary logit analysis the dfed of Left-Right
Differenceis estimated at only -.276,an indicaion, in ou mind, d the problems that can
arise in logit models when there is substantial heteroskedasticity (as the significant
variance cmporent for ideology implies). Moreover, the standard errors for the level-2
parameters and crosslevel interadions are off in the standard logit model. As a
consequence, one would reach dfferent conclusions in that model than ore would in the
multilevel model. On statisticd and theoreticd grounds, the multilevel approad is
preferable and shoud hence be the method d choice asfar aswe are cncerned.

CAVEATSOF MULTILEVEL MODELING

Although we have agued that multil evel methods are very well suited for many
applicaions in comparative research, we would be remiss in na highlighting some
“lowlights” of multil evel models. Lessnegatively, there ae several caveds to consider
before delving into multil evel modeling. Indeed, we have been careful to pant out some
of these pitfalls throughou and therefore, need na repeat ourselves here on isaues of
centering, interpreting levels of data greater than two, and isaues of estimator seledion.
However, there ae some @nceptua issies worth dscussng with regards to multil evel
modkeli ng.

Satistical Theory is Evolving. Although we discussed this earlier, thisis one avea that
does bea repeating. For many of the models and estimators discussed in this paper, the
statisticd theory underlying the methoddogy is dill in its infancy. And while a
substantial body of statistics and econametrics has focused on randam coefficients
modeling (c.f. Swamy 1970,Hsiao 1986,Longford 1993, relatively littl e atention urtil
recantly, has been devoted to the issuue of modeling multilevel data structures.
Consequently, the properties of some of the estimators discused herein are, qute
frankly, na fully understood (Ita Kreft, personal communication). Y et becaise so many
social theories, hypotheses, and cata ae hierarchicaly oriented, the “demand’ and desire
for these methods among applied reseachers has substantially outweighed the “suppy”
of statisticd theory. As a result, we caution that athough one may be amed with
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“contextua data”, absent a very strong contextual theory, multil evel methods will be no
savior.

Shoud We Be Concerned With Modeling “ Contex?” While mntextua explanations of
paliticd behavior are widespread in pditi cd science, contextual analyses have been and
remain controversial. At the heat of contextual modeling is an assumption that there is
something interesting abou how individuals are nested within aggregate “units’ (or how
level-1 unts are nested within level-2 unts). How contextual units are defined widely
varies. The simplest demarcaion d a mntextual unit is probably spatial or geographic.
Courtries, states, departements, parishes, districts, and so forth, are easily definable, but
are they pditicdly important? As King (1996, 1997 has recently noted, the
geographer’s “modifiable ared unit problem” has substantial implicaions for pdliticd
science, and in particular, contextual analysis. Roughly stated, the modifiable aed unit
problem suggests that changes in the definition o the aed unit can, and generally does,
elicit wild changes in interpretation d results (King 1997, 2551). In terms of
contextual analysis, arbitrary selection d contextual units or similarly, selection d units
because of ease in data gathering can very likely produce misleading, or worse, irrelevant
inferences. King (1996, 199) persuasively notes that the modifiable ared unit problem
is a theoretical problem and nd an empiricd problem. With regard to combining
multiple levels of data, then, we stressthat seledion d the extra-individual unit must be
theoreticdly driven, or else analyses of such data will suffer from the equivalent of the
modifiable aeal unit problem.

Blau (1980), in an essay on contexts and unts in sociologicd reseach similarly
articulates the theoreticd problem of determining what the “right” unit is in contextual
analyses. Blau ndes that the unit forming the context (i.e. the “influencer”) in some
studies may, in cther studies, be the objed of the influence:

In the sociological studies of social structures, the unit of analysis may range from small group

to entire societies. Larger social structures encompass smaller ones, and the ncepts and
variables relevant for their investigation are not the same. Formal organizaions can be the units
of analysis in one investigation, but they may be the socia context in another investigation of a
narrower unit... . (Blau 198052).

An additional problem emerges when contextual units are treaed as affili ational
or asciational groups. Contextual “effeds’” may be misleading because of self-seledion
bias (Hauser 197Q see &so Hauser 1974). If individuals can select to which groups they
are asciated (which of course, they can), then reseach designs demonstrating a group-
wise “socia influence effect” may redly be demonstrating nothing more than a self-
seledion mechanism. That is, the contextual effed is endogenous to the dedsion to join
the group in the first place. And as Achen and Shively (19%) note, very little
advancement has been made in solving this problem of contextual analysis.

But amore general criticism against contextual analysis has been leveled by King
(1996 who argues that context “doesn’t court” when it comes to explanations of
individual-level pdliticd behavior. His argument, in part, centers on the premise that
contextual effeds are rarely robust in explaining behavior. Furthermore, pditicd
scientists dioud demonstrate that context does not “court” by theorizing and speafying
models that are invariant acosscontextua units.
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In general, we agree with each of these aiticisms of contextual anaysis.
Demonstrating that individual-level outcomes vary across geographicd units withou
spedfying the theoretical importance and significance of this variation is tantamourt to
naming one' sresiduals. Spatial or “contextual” variation may be more-or-lessa nuisance
and inclusion d variables that indicate, for example, region, may help aleviate
heterogeneity problems, bu provide little substantive explanation d the poaliticd
phenomenon. And calling such findings “contextual effects’ doesn’t improve inference
making. Nevertheless we contend that theories of contextua influence at least in some
quarters, extend well beyond the documentation and “discovery” of spatia variation.
Huckfeldt and Sprague (1987, 1993, 199) explicitly cast their work in terms of social
interadion and nd in terms of mere geographical variation. Additionally, Huckfeldt and
Sprague, as well as other researchers (c.f. Przeworski 1974 Brown 1981, 1988Noell e-
Neumann 1984, have theorized that individua-level behavior cannd be understood
apart from context, and any attempt to do so would €licit problematic inferences. This
avenue of contextual anaysis is largely derived from the work of social theorists like
Durkheim, Bouden, Blau, and ahers who have theorized abou the relationship between
the individual and colledivities. The enterprise of contextua analysis, then, becomes an
attempt to link aggregates and individuals theoreticdly and meaningfully, and nd to
solely demonstrate geographicd variation. If one has no theory on how and why these
levels of data relate, then contextual analysis devolves to the “naming your residuals’
problem discussed previously. Additionally, if the aggregate-unit in which individuals
are nested is arbitrarily or atheoreticdly seleded, then too, will analyses of data fail to
yield meaningful insights.

Measurement. As more cwmplex statisticd models are developed to combine multiple
levels of data—the very models considered here—it seems clea to us that greater
attention will have to be paid to issues of measurement theory, validity, and reliability
assesgnent. How we define and measure @ncepts within the multil evel model is perhaps
an even higger issue than with traditionally less complex methods. Consider what is
going on even in the simplest multil evel models. Lower level coefficients are treded as
stochastic functions of variables creded at a higher level. The variances and covariances
within and between unts are derived from level-1 coefficients and the values of these
coefficients are “shrunk” to either the individual or the group-level. Level-2 coefficients
are heavily predicated on measurement of level-2 attributes. But underlying these
fireworks is a hefty premium on measurement and reli abili ty. Bad measures in multil evel
models “get worse” because such a heavy demand is placed on the data in terms of
estimating level-1 and level-2 coefficients as well asthe randam parts. As comparativists
move toward estimating these kind d models, we caition that substantial care neels to
be taken in understanding how the measure reflects the theoretical “contextua variable”
or gets at the gopropriate individual-level variable.

CONCLUSION
In this paper, we have delineaed the multilevel model in terms of comparative
contextual analysis. Comparative analysis is replete with theories and hypaotheses that
posit a relationship between variables measured at multiple levels. Standard
methoddogies for combining multiple levels of data breakdown in important ways and
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therefore provide an avenue toward multil evel modeling. Multil evel techniques provide
leverage in linking multiple levels of data while & the same time avoid the pitfalls
asciated with traditional methods of dummy variable models, separate regressons, and
standard interactive goproades.
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NOTES

! Althouch it should be noted at the start that paliti cd methodd ogists have wrestled with problems of
drawing inferences from multi ple levels of datafor some time (see Shively 1969 1974, 1987, Sprague
1976 1982, Achen 1983 Achen and Shively 1995 King 1990 1996, 1997, just to name afew). In
particularly, recent work by Achen and Shively (1995 and King (1997 has made significant inroads into
the eologicd inference problem. In this paper, we ae concerned with the problem of combining
individual-level and aggregate-level data, and of course therefore ae asuming the researcher adually
posesssindividual-level data. Jadkson (1992 dedlt with this problemin his paper on variable
coefficients models and we rely heavily on the ideasinitially forwarded by him. Additionally, recent work
by Bedk and Katz (1995 1996a, 1996b) and espedally Western (1997), have examined the properties and
appli cation issues of random coefficients models for comparative pdliticd analysis.

2 Although we ae mntrasting “individual-level” data with “aggregate-level” data, one need not perform
analyses at the individual-level to use multil evel models. Multil evel approacdhes are generally applicable
when one has data hierarchicdly nested (and one has a theory on how the multiple levels of data ae
related!). Thus, Western's (1997 work on multil evel models treasingtitutional attributes of countries as
the lower-order unit and models unemployment rates aaosstime.

% In contrasting “traditional” thick description methods with quantitative gproaches, we do not intend to
fan the fires of this debate in cross-areaanalysis. We think qualitative methods are an invaluable
component to cross-area analysis and, if suitably rigorousin design (seeKing, Keohane, and Verba 1994),
can yield inferencesin many cases far stronger than quantitative models.

* King (1996 has recently cdled into the question the importance of adually modeling context. Later in
the paper, we aldressKing' s argument. For now, we ae asuming that “contextual variation” isa mncern
to crossarea analysts (athough as we ague later, one need not model “context” to appropriately use

multil evel models).

® Although important quantitative analyses of “small-n” crossareadata have been produced. See for
example, Lange and Garrett (1985), Garrett and Lange (1989 and Bedk, Katz, Alvarez Garrett, and Lange
(1993).

® Although we susped that in some quarters of crossareareseach, King's (1997 solution will be viewed
skepticdly by those alhering to the view that aggregates posses “emergent properties.” Because of these
properties, aggregates (for example all edivities of individuals) possess a “redity” of their own making it
impossble to deaompose them into individual-level inferences. For example, Agnew (19960 refersto
King's ealogicd inference work as “ontologicd (and methoddogicd) individualism” (165, parenthesesin
original). We generally agreewith Achen and Shively’s (1995 assessment of thisview. They argue that
“emergent properties’ arguments, which are derived from social theorists like Durkheim , very often induce
falladous reasoning about aggregate data. As Achen and Shively note “[t]he Durkheimian beauties of
emergent properties have often bedaz4ed researchers. Too much of the sociologicd literature on
contextual effects has consisted dof singing the theoreticd praises of holistic effeds, arguing the substantive
plausibili ty of contextual effeds, and then showing statisticd biases due to aggregation effeds, without
noticing that meanings have shifted along the way” (Achen and Shively 1995 21).

" Clealy, individual-level comparative politi ca data have been avail able for sometime. Inglehart (1977)
used individual-level datafrom the ealy Seventiesto develop histheory of post-materiaist values. The
“development” we spedk of redly centers on the emergenceof adiverse set of individua-level data
colleded acossmany global regions.

8 And of course, in the United States, extensive individual-level and aggregate-level data have been

avail able for decales from a variety of sources.

9 Jadkson (1992 also uses the example of legislative voting as a motivation for random coefficients
models.

10 Of course Hauser’s (1970 admonitions are extremely relevant here. Hauser notes that group
membership islargely self-seledive. Thus, so-cdled “contextual effeds’ of group affili ation may reflea
nothing more than selection biases, and not some group-level dynamic. We discussin more detail at the
end of the paper, some of Hauser’s concerns with contextual analysis.

M Sociologist Peter Blau (1977, 1989) has been instrumental in theorizing about these kinds of social
networks. Blau has argued that group or social identificaion islargely a function of demographic and
socioenomic factors such that individuals tend to identify more with individuals who pesess smilar
attributes. Thus, geographica or famili al connections are lessimportant in terms of social networks than
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demographic-based and socioemnomic-based ties. Thiskind of linkage or socia context has prompted the
concept of “Blau Space” (McPherson and Ranger-Moore 1991).

2|1ndead, Mason, Wong, and Entwistle's (1983 ealy work on multilevel analysis was explicitly cast in
terms of models for contextual analysis.

131 this context, the Chow test is sSmply an F test.

4 Furthermore, it is not clear how useful thiskind of testingisat all! Bartels (1996 important work on the
issue of poding disparate observations suggests that F-tests of this sort frequently fail to test what “analysts
need dane” (Bartels 1996, 935). He notes that thistest only focuses on goochessof-fit and not on
differencesin parameter values.

15Bedk (1985) in regard to time series data, and Rivers (1988 in regard to crosssedional data have been
instrumental in pointing out the problem associated with heterogeneity within subsets of data and proposed
methods to addressthis problem. Subsequent work by Jadkson (1991), Bedk and Katz (1995a, 1995h),
Bartels (1996), and Western (1997), among many others, have propcsed methods to ded with these types
of problems, but, as Bartels (1996 notes, it is commonplacefor reseachers to ignore problems associated
with disparate observations.

16 Greene (199B), we should note, makes this assertion in terms of his discusson of interadion terms with
dummy variables. Using our example, separate regression estimates are identicd to apoded model with
interaction terms between the mvariates and a dummy variable denoting the wuntry. And in fad if the
disturbances acossthe ountry are equal, then it is most efficient to pod the observations rather than
estimating separate regressions. Greene’s (1993 point isthat if the country-wise disturbance variances
differ aaossgroups (countries), then this dummy variable gproach will not be feasible and it becomes
most efficient to disaggregate the data.

Y The “space” ad “time” terminology of course stems from Stimson’s (1985 classc aticle on poded
time series analysis.

18 Thoughthis approach is not always feasible. Inclusion of separate dummy variables for crosssectional
units, for example, may result in many hundreds of parameters.

19 Or as Hanushek and Jadson (1977 note, “[t]he use of dummy variables admits to alad of knowledge
and/or data. We do not know the underlying cause of the differencesin the populations, or we canot break
out separate dements of this different behavior” (103).

20 |_est we sound too pessmistic ebout dummy variables approaches, we stressthat our argument hinges on
the asumption that the reseach isinterested in making inferences from multiple levels of data., and not
intent on soley all eviating problems of heteroskedasticity or autocorrelation.

2L This asped sets multilevel models apart from ealogica models, in which the dependent variable (and all
other variables) is measured at the gygregate level, for example for level-2 units.

22 Certain software padages like SAS require the reformulation of the multilevel model into a single
equation. Other padkages (such as MLN [Goldstein 1995 Woodhouse 199%] and HLM4 [Bryk,
Raudenbush, and Congdon 1994) require spedfication of multi ple equations.

3|t is posshle to extend the multil evel model by allowing for heteroskedastic level-1 disturbances (which
may also be seriadly correlated —see aaumption A.3). We will not discussthis extension in this paper but
for an excdlent discussion of the topic the reader is referred to Goldstein (1995.

24 While the multil evel logit model is heteroskedastic, it is distinct from the heteroskedastic logit model
described by Alvarez and Brehm (1996. In the terms of multilevel modeling, the source of
heteroskedasticity in the heteroskedastic logit model is locaed in the level-1 units; the source of
heteroskedasticity in the multilevel logit model is locaed in the level-2 units. Steenbergen is presently
working on establishing a heteroskedastic multilevel logit model which combines the logic of the
heteroskedastic logit model and that of multilevel logit analysis.

% Goldstein (1995 also discusses multilevel models for non-ordered pdytomous variables. While in
principle such models could be spedfied, we have not seen any applications of them, nor are we aware of
software that will handle these models. The reason for this may be quite simple. Even in single-level
analyses, multinomial logit and probit models can cause an enormous expansion of the number of
parameters that needs to be etimated and this expansion will even be more etreme in multil evel
spedfications of these models.

% Althouch the statisticad issues that are involved are much more @wmplicaed, we @n compare the
problem of FMLE to the one that emerges in estimating the sample variance The variance MLE is given by
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A2 _ 1 <\ 2 . . . . _ 1 <\ 2
0° = o Z (X, —X)? , which differs from the common variance etimator & = - _12 (X, =%X)° .
The latter estimator takes into consideration that one degree of freedom is lost in estimating the sample
mean that goes into the variance etimation. By making this adjustment, the common variance estimator
eliminates the bias of the MLE (e.g., Hogg and Craig 1978.

2" There is oIme evidence that RMLE may be badly behaved under certain circumstances. One of our
colleggues noticed that the deviancefor RMLE increased as he alded more predictors to the model (George
Rabinowitz, personal communication). This may have been a @mnsequence of the size of the problem,
which entailed a large number of predictors, but it may aso reflect problems associated with the
minimization of least squares residuals as oppased to the data.

28 A complete proof can be found in Bryk and Raudenbush (19932). It is based on the well-known result that

=
B, =B, +(Xj'Xj) X,'€;. Substitution into equation [9], gives

A A

-1
Bj=ij+5j+(Xj'Xj) X,'€;. The disperson matrix for B, is given by

=
V[,]+ vng'xj) X,'€; E An evaluation of this matrix gives the dispersion matrix as listed in the

text.

29 Of course, one may not want to include extremely sparse sub-groups (e.g., fewer than 5 cases), as the
information in such sub-groups can often ot be trusted.

30 Empirica Bayes methods have in common that they evaluate Bayes rule on the basis of the observed
data (hencethe name “empiricd Bayes’). Such methods are now finding increasing acceptancein statistics,
as they allow researchers to engage multiple estimators of a parameter in a @nsistent manner that has
desirable statisticd properties. For a discussion of EB methods, the reader is referred to the seminal work of
Lindley and Smith (1972 and to the excdlent discusgon by Carlin and Louis (1996.

31 We should note, however, that its possble to over-center in multil evel analysis. For instance, Bryk and
Raudenbush (1992 suggest that all predictors sould be centered, including dummy variables. In our view,
this is counter-productive. The cetering of dummies is not necessary either for the prevention of ill-
conditioning or for the interpretation of results. In fad, we susped that centered dummies hinder a dea
interpretation of the results, rather than enhanceit.
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